Cardiovascular diseases (CVDs) are the leading cause of death worldwide, accounting for 32% of deaths annually. Early diagnosis is crucial, particularly through the accurate measurement of central blood pressure. The measurement of pressure through catheterization is currently considered the gold standard. However, its highly invasive nature makes it unsuitable for widespread clinical use. For this reason, recent years have seen growing interest in the development of non-invasive measurement techniques, which, while offering practicality and safety for the patient, face significant limitations in terms of accuracy. The objective of this thesis is to validate a non-invasive technique for central blood pressure measurement. The method relies on computing wave speed and separating waves into forward and backward components. It leverages non-invasive measurements of vessel diameter and flow velocity to estimate pressure waveforms. Experiments were conducted using an artificial aorta designed to replicate the main arteries, and the setup was configured to achieve a physiological behaviour. Measurements of diameter and flow rate were acquired to perform the non-invasive pressure analysis, and invasive pressure was taken as a reference for validation. The obtained results showed that non-invasive pressure waveforms closely replicated the morphology of invasive measurements, particularly in proximal positions, with minimal systolic peak amplitude errors. However, at distal locations, reduced peak amplitudes highlighted a limitation in fully capturing pressure peaks. This study demonstrated the feasibility of non-invasive central pressure measurement using this method. With further refinement, it could have a significant clinical impact, offering a reliable and less invasive alternative for early diagnosis and management of CVDs.
Le malattie cardiovascolari sono la principale causa di morte a livello mondiale, rappresentando il 32% dei decessi annuali. Una diagnosi precoce è fondamentale, in particolare attraverso la misurazione accurata della pressione arteriosa centrale. La misurazione della pressione mediante cateterizzazione rappresenta attualmente la tecnica più precisa e affidabile. Tuttavia, la sua natura altamente invasiva la rende inadatta per un utilizzo clinico su larga scala. Per questo motivo, negli ultimi anni si è registrato un crescente interesse nello sviluppo di tecniche di misurazione non invasive, che, pur offrendo maggiore praticità e sicurezza per il paziente, presentano limitazioni significative in termini di accuratezza. L'obiettivo di questa tesi è validare una tecnica non invasiva per la misurazione della pressione arteriosa centrale. Il metodo si basa sul calcolo della velocità d’onda sfigmica e sulla separazione delle onde in due componenti di verso opposto. Questa tecnica si avvale di misurazioni non invasive del diametro del vaso e della velocità del flusso per stimare le forme d'onda della pressione. Gli esperimenti sono stati condotti utilizzando una aorta artificiale progettata per replicare le arterie principali, con il setup configurato per ottenere valori fisiologici di pressione e velocità. Sono state acquisite misurazioni del diametro e della portata per eseguire l'analisi non invasiva della pressione, utilizzando la pressione invasiva come riferimento per la validazione. I risultati ottenuti hanno mostrato che la forma d'onda della pressione non invasiva replicava fedelmente la morfologia delle misurazioni invasive, in particolare nelle posizioni prossimali, con errori minimi nell'ampiezza del picco sistolico. Tuttavia, nelle posizioni distali, ampiezze di picco ridotte nella forma d'onda non invasiva hanno evidenziato una limitazione nel catturare completamente i picchi di pressione. Questo studio ha dimostrato la fattibilità della misurazione non invasiva della pressione centrale utilizzando questo metodo. Con ulteriori perfezionamenti, potrebbe avere un impatto clinico significativo, offrendo un'alternativa affidabile e meno invasiva per la diagnosi precoce e la gestione delle malattie cardiovascolari.
Validation of a novel method for non-invasive determination of arterial pressure waveforms using an in vitro human arterial model
Alfieri, Francesca
2023/2024
Abstract
Cardiovascular diseases (CVDs) are the leading cause of death worldwide, accounting for 32% of deaths annually. Early diagnosis is crucial, particularly through the accurate measurement of central blood pressure. The measurement of pressure through catheterization is currently considered the gold standard. However, its highly invasive nature makes it unsuitable for widespread clinical use. For this reason, recent years have seen growing interest in the development of non-invasive measurement techniques, which, while offering practicality and safety for the patient, face significant limitations in terms of accuracy. The objective of this thesis is to validate a non-invasive technique for central blood pressure measurement. The method relies on computing wave speed and separating waves into forward and backward components. It leverages non-invasive measurements of vessel diameter and flow velocity to estimate pressure waveforms. Experiments were conducted using an artificial aorta designed to replicate the main arteries, and the setup was configured to achieve a physiological behaviour. Measurements of diameter and flow rate were acquired to perform the non-invasive pressure analysis, and invasive pressure was taken as a reference for validation. The obtained results showed that non-invasive pressure waveforms closely replicated the morphology of invasive measurements, particularly in proximal positions, with minimal systolic peak amplitude errors. However, at distal locations, reduced peak amplitudes highlighted a limitation in fully capturing pressure peaks. This study demonstrated the feasibility of non-invasive central pressure measurement using this method. With further refinement, it could have a significant clinical impact, offering a reliable and less invasive alternative for early diagnosis and management of CVDs.File | Dimensione | Formato | |
---|---|---|---|
2024_12_Alfieri_Tesi_01.pdf
non accessibile
Descrizione: Testo della Tesi
Dimensione
2.72 MB
Formato
Adobe PDF
|
2.72 MB | Adobe PDF | Visualizza/Apri |
2024_12_Alfieri_ExecutiveSummary_02.pdf
non accessibile
Descrizione: Testo dell'Executive Summary
Dimensione
851.95 kB
Formato
Adobe PDF
|
851.95 kB | Adobe PDF | Visualizza/Apri |
I documenti in POLITesi sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.
https://hdl.handle.net/10589/231464