Sudden Infant Death Syndrome (SIDS) remains a critical issue in neonatal health, with its causes still not well understood. Research has suggested that rebreathing of exhaled CO2 could play a role in SIDS, yet measuring this phenomenon directly in vivo is ethically and practically challenging. This limitation has led to the development of various in vitro setups aimed at evaluating how different properties of bedding materials impact CO2 rebreathing. However, the lack of standardized testing protocols for rebreathing assessment has resulted in significant variability in setup designs, many of which struggle to replicate realistic conditions accurately. In this thesis, a novel in vitro setup is presented, designed to closely mimic real-life conditions. Two 3D-printed head models, morpometrically similar to an infant’s anatomy and based on MRI scans, were created, one with a deformable nose and one with a rigid nose, to assess the impact of nose flexibility. The setup also includes a neonatal breathing simulator using pre-recorded respiratory patterns, as well as a controlled CO2 input to simulate expired CO2 concentration. Additionally, it includes a mechanical system used to to adjust the head’s position relative to the tested material and to regulate the force with which the head is pressed into the bedding material, measured by a load cell. Using this advanced setup, various bedding materials were tested, allowing us to assess CO2 rebreathing across materials with different characteristic including the sinking depth, a parameter describing the material’s softness. Altogether, this thesis lay the groundwork for a comprehensive tool that will enable further studies on infant sleep environments and guide the design of safer sleep products.
La Sindrome della Morte Improvvisa del Lattante (SIDS) rappresenta un problema critico per la salute neonatale, le cui cause non sono ancora completamente comprese. La ricerca ha suggerito che la re-inspirazione di CO2 espirata possa avere un ruolo significativo nella SIDS, ma misurare direttamente questo fenomeno in vivo risulta eticamente e praticamente complesso. Queste limitazioni hanno portato allo sviluppo di diversi set-up in vitro, progettati per valutare come le proprietà dei materiali dei lettini influenzino la re-inspirazione di CO2. Tuttavia, l’assenza di protocolli di test standardizzati per la valutazione della re-inspirazione ha generato una significativa variabilità nei design dei set-up, molti dei quali faticano a replicare accuratamente le condizioni reali. In questa tesi viene presentato un innovativo set-up in vitro, progettato per simulare da vicino scenari realistici. Sono stati sviluppati due modelli di testa stampati in 3D, morfometricamente simili all’anatomia di un lattante e derivati da scansioni RM, uno con un naso deformabile e uno con un naso rigido, per valutare l’impatto della flessibilità nasale. Il set-up include anche un simulatore respiratorio neonatale che utilizza modelli respiratori pre-registrati, insieme a un ingresso di CO2 controllato per replicare le concentrazioni espiratorie. È stato inoltre integrato un sistema meccanico per regolare la posizione della testa rispetto al materiale testato e per controllare la forza con cui la testa viene premuta sul materiale da letto, misurata tramite una cella di carico. Utilizzando questo avanzato set-up, sono stati testati diversi materiali da letto per valutare la re-inspirazione di CO2 in base alle caratteristiche dei materiali, tra cui la profondità di affondamento, un parametro che descrive la morbidezza. Complessivamente, questa tesi getta le basi per uno strumento completo che faciliterà ulteriori studi sugli ambienti di sonno dei lattanti e guiderà la progettazione di prodotti per il sonno più sicuri.
Assessing the impact of bedding materials on infant breathing: an in vitro study
ZONI, DAVIDE
2023/2024
Abstract
Sudden Infant Death Syndrome (SIDS) remains a critical issue in neonatal health, with its causes still not well understood. Research has suggested that rebreathing of exhaled CO2 could play a role in SIDS, yet measuring this phenomenon directly in vivo is ethically and practically challenging. This limitation has led to the development of various in vitro setups aimed at evaluating how different properties of bedding materials impact CO2 rebreathing. However, the lack of standardized testing protocols for rebreathing assessment has resulted in significant variability in setup designs, many of which struggle to replicate realistic conditions accurately. In this thesis, a novel in vitro setup is presented, designed to closely mimic real-life conditions. Two 3D-printed head models, morpometrically similar to an infant’s anatomy and based on MRI scans, were created, one with a deformable nose and one with a rigid nose, to assess the impact of nose flexibility. The setup also includes a neonatal breathing simulator using pre-recorded respiratory patterns, as well as a controlled CO2 input to simulate expired CO2 concentration. Additionally, it includes a mechanical system used to to adjust the head’s position relative to the tested material and to regulate the force with which the head is pressed into the bedding material, measured by a load cell. Using this advanced setup, various bedding materials were tested, allowing us to assess CO2 rebreathing across materials with different characteristic including the sinking depth, a parameter describing the material’s softness. Altogether, this thesis lay the groundwork for a comprehensive tool that will enable further studies on infant sleep environments and guide the design of safer sleep products.File | Dimensione | Formato | |
---|---|---|---|
2024_12_Zoni_Executive Summary.pdf
non accessibile
Descrizione: testo executive summary
Dimensione
3.81 MB
Formato
Adobe PDF
|
3.81 MB | Adobe PDF | Visualizza/Apri |
2024_12_Zoni_Tesi.pdf
non accessibile
Descrizione: testo tesi
Dimensione
14.08 MB
Formato
Adobe PDF
|
14.08 MB | Adobe PDF | Visualizza/Apri |
I documenti in POLITesi sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.
https://hdl.handle.net/10589/231471