Electric propulsion (EP) systems are attracting attention for their high efficiency and suitability for deep-space missions, where chemical propulsion’s low fuel efficiency is a limitation. Among EP variants, the Microwave Electrothermal Thruster (MET) is notable for using microwave energy to generate and sustain high-temperature plasma in a resonant cavity, efficiently converting thermal energy into thrust. In this thesis, MET is investigated with water as the propellant, which is non-toxic, storable, is cheap and easily accessible, making it suitable for diverse missions. However, accurate models of MET performance that account for complex thermodynamics and fluid dynamics remain limited. This work develops a comprehensive MET model to analyze the propellant behavior in the resonant cavity and in the nozzle, examining effects of chamber temperatures and wall heat transfer and accounting for the effects of non-equilibrium water chemistry. An Euler-based model was developed to observe the effects of non-equilibrium chemistry, initially applied in detail to a representative case with a chamber temperature of 6000 K, comparing it with the frozen and shifting equilibrium flow cases. The study was then extended parametrically across a wide temperature range, from 800 K to 8800 K, to explore the effects of varying conditions. Finally, the impact of heat exchange with the nozzle walls was examined by modifying the Euler model and applying it again to the 6000 K case study. A fixed condition of 1 bar chamber pressure and 1 Pa target exit pressure has been examined. Simulations indicate that reaction kinetics are often too slow to reach equilibrium in the nozzle, creating effectively frozen-like flow conditions, while heat loss to the walls significantly reduces exit velocity and specific impulse, with around 40% of input specific power lost through the nozzle walls in non-adiabatic conditions. These findings highlight the need to incorporate heat transfer in
I sistemi di propulsione elettrica (EP) stanno suscitando crescente interesse grazie alla loro efficienza e capacità di supportare missioni nello spazio profondo, dove i motori chimici sono limitati dalla bassa efficienza. Tra i vari propulsori EP, il Microwaves Electrothermal Thruster (MET) si distingue per l’utilizzo di microonde per generare e mantenere un plasma ad alta temperatura in una cavità risonante, convertendo efficacemente l’energia termica in spinta. In questa tesi, il MET è studiato utilizzando acqua come propellente, essendo essa non tossica, facilmente stoccabile, economica e ampiamente reperibile. Tuttavia, modelli accurati delle prestazioni del MET che considerano la termodinamica complessa e la dinamica dei fluidi sono ancora limitati. Il lavoro sviluppato propone un modello completo per analizzare il comportamento del propellente nella cavità risonante e nell’ugello, esaminando gli effetti della temperatura in camera, del trasferimento di calore alle pareti e della chimica in non-equilibrio dell’acqua. È stato creato un modello basato su Eulero, applicato inizialmente a un caso con temperatura in camera di 6000 K, confrontato con i casi limite di flusso congelato e di equilibrio chimico traslante. Lo studio è stato esteso ad un’analisi parametrica, variando la temperatura da 800 K a 8800 K. Infine, è stato esaminato l’effetto dello scambio termico con le pareti dell’ugello, modificando il modello di Eulero per applicarlo nuovamente al caso di 6000 K. Le simulazioni indicano che la cinetica delle reazioni è spesso troppo lenta per raggiungere l’equilibrio nell’ugello, creando condizioni simili al flusso congelato, mentre il calore perso verso le pareti riduce la performance, con circa il 40% della potenza in ingresso dissipata nelle pareti in condizioni non adiabatiche. Questi risultati evidenziano l’importanza di considerare il trasferimento di calore nell’analisi del MET e la necessità di garantire un adeguato sistema di raffreddamento per gestire efficacemente le perdite termiche nei futuri progetti.
Nozzle expansion modeling and simulation for a microwave electrothermal thruster using water propellant
Lancini, Alessia
2023/2024
Abstract
Electric propulsion (EP) systems are attracting attention for their high efficiency and suitability for deep-space missions, where chemical propulsion’s low fuel efficiency is a limitation. Among EP variants, the Microwave Electrothermal Thruster (MET) is notable for using microwave energy to generate and sustain high-temperature plasma in a resonant cavity, efficiently converting thermal energy into thrust. In this thesis, MET is investigated with water as the propellant, which is non-toxic, storable, is cheap and easily accessible, making it suitable for diverse missions. However, accurate models of MET performance that account for complex thermodynamics and fluid dynamics remain limited. This work develops a comprehensive MET model to analyze the propellant behavior in the resonant cavity and in the nozzle, examining effects of chamber temperatures and wall heat transfer and accounting for the effects of non-equilibrium water chemistry. An Euler-based model was developed to observe the effects of non-equilibrium chemistry, initially applied in detail to a representative case with a chamber temperature of 6000 K, comparing it with the frozen and shifting equilibrium flow cases. The study was then extended parametrically across a wide temperature range, from 800 K to 8800 K, to explore the effects of varying conditions. Finally, the impact of heat exchange with the nozzle walls was examined by modifying the Euler model and applying it again to the 6000 K case study. A fixed condition of 1 bar chamber pressure and 1 Pa target exit pressure has been examined. Simulations indicate that reaction kinetics are often too slow to reach equilibrium in the nozzle, creating effectively frozen-like flow conditions, while heat loss to the walls significantly reduces exit velocity and specific impulse, with around 40% of input specific power lost through the nozzle walls in non-adiabatic conditions. These findings highlight the need to incorporate heat transfer in| File | Dimensione | Formato | |
|---|---|---|---|
|
2024_12_Lancini_Executive Summary.pdf
accessibile in internet solo dagli utenti autorizzati
Descrizione: Executive Summary
Dimensione
623.08 kB
Formato
Adobe PDF
|
623.08 kB | Adobe PDF | Visualizza/Apri |
|
2024_12_Lancini_Tesi.pdf
accessibile in internet solo dagli utenti autorizzati
Descrizione: Tesi
Dimensione
2.14 MB
Formato
Adobe PDF
|
2.14 MB | Adobe PDF | Visualizza/Apri |
I documenti in POLITesi sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.
https://hdl.handle.net/10589/231472