Objective: This dissertation aims to explore how innovative AI-based solutions are reshaping HR processes and understand how they impact organizations. To achieve this goal, the research investigates emerging trends in the international landscape and assesses the status of implementation of these solutions by Italian organizations. Scope and metodology: This dissertation presents a mapping of international startups offering advanced AI technologies for HR processes to identify key market trends. Moreover, it reports the results of interviews conducted with Italian companies to provide a deeper understanding of the practical benefits and challenges associated with the adoption of AI-driven HR practices. To ensure an adequate analysis of the current state of the art, the dissertation focused on three macro processes, which are further composed of other processes. The first macro process identified is Attraction, which includes Employer Branding, Recruitment, and Selection. The second is Learning & Development, which involves Career Growth, Feedback Management, and Training. Lastly, there is Well-Being, which includes Employee Well-Being. To perform the aforementioned analysis, two frameworks were utilized: initially, the classification of AI technologies made by the Artificial Intelligence Observatory of the Politecnico di Milano was followed, after which a more specific and detailed grouping was defined to categorize solutions according to the needs they were addressing. Findings and conclusions: The frameworks were then used to analyze the innovation trends emerged form the international startups mapping. From this analysis, new families of solutions were identified and integrated into the framework to update it and it was then used to classify the results emerged form the interview. They were conducted with the aim to comprehend the state of adoption AI technologies in HR functions for large Italian organization that are operating in various sectors that are at the forefront of HR innovation. This made it possible to assess which benefits and challenges companies are facing during the implementation of these technologies, and eventually, a comparison of the trends emerging from both objectives of the research was consolidated. Limitations and future developements: One of the primary challenges identified in this study was the use of a restricted sample of startups, which led to insu"cient data for certain evaluations, limiting the ability to derive meaningful conclusions. A similar limitation a!ected the portfolio of organizations interviewed: although the sample was multisectoral, it lacked diversity in terms of company size. To overcome these challenges, expanding the number of databases used to source startups and diversifying the sample of companies interviewed would be advantageous.
Obiettivo: Questa tesi si propone di esplorare come le soluzioni innovative basate sull’intelligenza artificiale stiano ridisegnando i processi HR e di comprendere il loro impatto sulle organizzazioni. Per raggiungere questo obiettivo, la ricerca indaga le tendenze emergenti nel panorama internazionale e valuta lo stato di implementazione di queste soluzioni da parte delle organizzazioni italiane. Estensione e metodologia: La tesi presenta una mappatura delle startup internazionali che offrono tecnologie avanzate di AI per i processi HR, al fine di identificare i principali trend di mercato. Inoltre, riporta i risultati di interviste condotte con aziende italiane per fornire una comprensione più approfondita dei benefici pratici e delle sfide associate all’adozione di pratiche HR guidate dall’IA. Per garantire un’analisi adeguata dell’attuale stato dell’arte, la tesi si è concentrata su tre macro processi, che sono ulteriormente composti da altri processi. Il primo macro processo individuato è l’Attrazione, che comprende Employer Branding, Reclutamento e Selezione. Il secondo è l’Apprendimento e sviluppo, che comprende la crescita della carriera, la gestione dei feedback e la formazione. Infine, c’è il benessere, che comprende il benessere dei dipendenti. Per effettuare la suddetta analisi, sono stati utilizzati due framework: inizialmente è stata seguita la classificazione delle tecnologie di IA effettuata dall’Osservatorio sull’Intelligenza Artificiale del Politecnico di Milano, dopodiché è stato definito un raggruppamento più specifico e dettagliato per categorizzare le soluzioni in base alle esigenze a cui rispondevano. Risultati e conclusioni: I framework sono stati poi utilizzati per analizzare i trend di innovazione emersi dalla mappatura delle startup internazionali. Da questa analisi sono state identificate nuove famiglie di soluzioni che sono state integrate nel framework per aggiornarlo ed è stato poi utilizzato per classificare i risultati emersi dalle interviste. Queste ultime sono state condotte con l’obiettivo di comprendere lo stato di adozione delle tecnologie AI nelle funzioni HR di grandi organizzazioni italiane che operano in diversi settori all’avanguardia nell’innovazione delle risorse umane. In questo modo è stato possibile valutare quali benefici e quali sfide le aziende stanno affrontando durante l’implementazione di queste tecnologie e, infine, è stato consolidato un confronto tra le tendenze emerse da entrambi gli obiettivi della ricerca. Limitazioni e sviluppi futuri: Una delle sfide principali identificate in questo studio è stato l’utilizzo di un campione ristretto di startup, che ha portato a dati insufficienti per alcune valutazioni, limitando la capacità di trarre conclusioni significative. Una limitazione simile ha riguardato il portafoglio di organizzazioni intervistate: sebbene il campione fosse multisettoriale, mancava di diversità in termini di dimensioni aziendali. Per superare queste sfide, sarebbe vantaggioso ampliare il numero di database utilizzati per reperire le startup e diversificare il campione di aziende intervistate.
Artificial intelligence and human resources: innovative trends and main impacts
MARCHETTI, DAVIDE;SCARDOVI, RITA
2023/2024
Abstract
Objective: This dissertation aims to explore how innovative AI-based solutions are reshaping HR processes and understand how they impact organizations. To achieve this goal, the research investigates emerging trends in the international landscape and assesses the status of implementation of these solutions by Italian organizations. Scope and metodology: This dissertation presents a mapping of international startups offering advanced AI technologies for HR processes to identify key market trends. Moreover, it reports the results of interviews conducted with Italian companies to provide a deeper understanding of the practical benefits and challenges associated with the adoption of AI-driven HR practices. To ensure an adequate analysis of the current state of the art, the dissertation focused on three macro processes, which are further composed of other processes. The first macro process identified is Attraction, which includes Employer Branding, Recruitment, and Selection. The second is Learning & Development, which involves Career Growth, Feedback Management, and Training. Lastly, there is Well-Being, which includes Employee Well-Being. To perform the aforementioned analysis, two frameworks were utilized: initially, the classification of AI technologies made by the Artificial Intelligence Observatory of the Politecnico di Milano was followed, after which a more specific and detailed grouping was defined to categorize solutions according to the needs they were addressing. Findings and conclusions: The frameworks were then used to analyze the innovation trends emerged form the international startups mapping. From this analysis, new families of solutions were identified and integrated into the framework to update it and it was then used to classify the results emerged form the interview. They were conducted with the aim to comprehend the state of adoption AI technologies in HR functions for large Italian organization that are operating in various sectors that are at the forefront of HR innovation. This made it possible to assess which benefits and challenges companies are facing during the implementation of these technologies, and eventually, a comparison of the trends emerging from both objectives of the research was consolidated. Limitations and future developements: One of the primary challenges identified in this study was the use of a restricted sample of startups, which led to insu"cient data for certain evaluations, limiting the ability to derive meaningful conclusions. A similar limitation a!ected the portfolio of organizations interviewed: although the sample was multisectoral, it lacked diversity in terms of company size. To overcome these challenges, expanding the number of databases used to source startups and diversifying the sample of companies interviewed would be advantageous.File | Dimensione | Formato | |
---|---|---|---|
2024_12_Marchetti_Scardovi.pdf
accessibile in internet per tutti
Descrizione: Tesi di Laurea Magistrale - Davide Marchetti, Rita Scardovi
Dimensione
4.09 MB
Formato
Adobe PDF
|
4.09 MB | Adobe PDF | Visualizza/Apri |
I documenti in POLITesi sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.
https://hdl.handle.net/10589/231575