Daily activities, such as walking or climbing stairs, despite their apparent simplicity, involve extremely complex interactions at the knee joint level. In this intricate anatomical structure, the ligaments play a crucial role in ensuring the knee stability and functionality: they are rigid enough to prevent joint dislocation under high loads, but at the same time they are arranged in such a way as to ensure a wide range of motion in the sagittal plane. Understanding the loads supported by the knee ligaments during daily activities and how these loads are influenced by muscular contractions is crucial from a clinical perspective for several reasons. This knowledge can enhance our understanding of knee biomechanics and the mechanisms underlying knee injuries and diseases, which has several practical implications in both prevention and treatment. Furthermore, be aware of the load distribution among the knee ligaments could help to improve surgical outcomes, providing criteria for the design and alignment of knee prosthetic implants. Moreover, being able to predict how alterations in ligament stiffness or changes in muscular forces affect the knee kinematics could facilitate the identification of potential high-risk movements. In this sense, many studies have been conducted on cadavers, enjoying the advantage of examining real anatomy and real mechanical properties of tissues; however, they face challenges in replicating the external loads and muscle forces present during physiological movement. On the other hand, in vivo measurements face ethical and technical challenges, generally quantifying ligament strains rather than tension and only during limited functional movements. Given these limitations, musculoskeletal modelling emerges as a crucial tool for estimating the tension generated by knee ligaments, especially under dynamic conditions. While the general role of ligaments is well understood, relatively few studies have focused on their response during dynamic activities like walking and stair climbing. Additionally, existing studies often present conflicting results, and comparisons are further complicated because the input functions for the models are not disclosed. Thus, this thesis originates from the awareness that knowing the knee joint ligament loads during dynamic tasks is significant for both scientific and clinical fields. This research also aims to address the limitations of current approaches and the paucity of studies in the existing literature. Hence, the main goal of this thesis is to implement a three-dimensional musculoskeletal model of the knee joint able to quantify ligament tensions, to deepen the relationship between the ligament loads and the muscle forces as well as to predict the effect of a single element modification on the whole joint biomechanics. Specifically, this thesis focused on the walking task, examining the knee joint under different conditions. Then, the intact knee condition was also examined during another common daily activity: stair climbing. The first step was to implement a three-dimensional model of an intact knee joint, then applied all along the research process and adapted from time to time to the different simulated conditions. The knee model, implemented in the SimWise4D platform (DST, Canton, MI, USA), includes femur, tibia, fibula and patella obtained from magnetic resonance images. The ligamentous structure, including capsule, cruciate and collateral ligaments, was simulated by means of 13 straight springs with nonlinear behaviour (viscoelastic elements) and each ligament was modelled as consisting of several fascicles which could be recruited differently under different conditions. The main muscles acting on the knee joint (Quadriceps, Hamstrings and Gastrocnemii muscle groups) were included into the model: each muscle was modelled as a force actuator controlled by input functions estimated by the "minimization of the maximum force" criterion. As for the performance of the implemented model, the main consolidated phenomena about the knee joint mechanisms were confirmed in the simulation of the gait cycle: the screw home mechanism, the posterior displacement of the femur during the knee flexion, the typical pattern of the tibial-femoral contact force, the loading/unloading effects on the cruciate ligaments produced by the contraction of Quadriceps and Hamstrings. Additionally, further efforts have been made to evaluate the model's performance under all simulated conditions. This has been achieved by comparing the obtained results with existing literature or providing detailed biomechanical explanations. In the first application of the implemented model, a gait cycle was simulated animating the intact knee model through data obtained from motion capture. The tension developed by the ligaments were quantified and the role of the different muscles in determining the ligament loads was examined. This study showed that the Quadriceps contraction is the main responsible for the Anterior Cruciate Ligament (ACL) loading, while the Hamstrings muscle group is the primary contributor to the high tension on the Posterior Cruciate Ligament (PCL), specifically during the swing phase. The collateral ligaments, consistently with their longitudinal arrangement along the femur and the tibia, showed a reduced sensitivity to muscle contractions. Finally, the research on the intact knee concludes with the simulation of clinical-functional tests, allowing for the assessment of the joint stiffness and laxity and ligament responses to the different manoeuvres. The next step in the research aimed to fill a gap in the literature regarding the impact of ACL sacrifice on knee kinematics during walking. Thus, the ACL was removed from the knee model and a dynamic simulation of the gait cycle was performed. It was found that the superficial and deep bundles of the Medial Collateral Ligament (MCL) become the main passive stabilizers to the anterior translation of the tibia when the ACL is missing. It was also demonstrated that the reduction in the Quadriceps activity, leading to partial atrophy over time, finds its effectiveness in reducing the loads of all the remaining ligaments except for the PCL. A further study was designed to bridge another scientific gap: due to the rarity of isolated PCL injuries, the literature still lacks a comprehensive understanding of the changes in knee joint biomechanics during walking. Hence, many simulations of the gait cycle were performed exploring different degrees of PCL injury severity and the redistribution of internal loads among the remaining ligaments was assessed. The obtained results showed that in case of PCL lesion, the MCL becomes the primary stabiliser against the posterior tibial translation, supported by the Lateral Collateral Ligament (LCL). Despite this adaptive mechanism, the tibial-femoral contact force appeared increased compared to the intact knee condition and the tibia still experienced posterior displacement, resulting in a forward shift of the tibial-femoral contact point. This phenomenon clarifies the common occurrence of tibial cartilage degeneration in PCL-injured knees. Moreover, another compensatory mechanism emerged from this study: reducing Hamstring activity could relieve the remaining ligaments compensating for the PCL deficit, thereby reducing the contact force between the distal femur and proximal tibia. Subsequently, an additional research question was explored by examining the prosthetic knee: although many studies have compared different implant designs, no reference was found to the changes induced with respect to the natural knee joint. For this purpose, a posterior-stabilized prosthesis was virtually implanted in the three-dimensional musculoskeletal model and a dynamic simulation of the gait cycle was run. No cam-post engagement was detected during the gait cycle simulation, and this is consistent considering that the maximum knee flexion angle achieved during the simulated gait cycle was smaller than the flexion angle required for initial cam-post contact, as reported in the literature and verified by further simulations. Among the remaining ligaments, the superficial and deep bundles of MCL supported the highest load, consistently with the fact that in case of cruciate ligaments deficiency, the medial ligamentous structures become the primary stabilizers to the anterior-posterior tibial translation. Once the walking task was extensively explored, the research shifted to another task typically performed in daily life: climbing stairs. To the author’s best knowledge, this is the first study trying to quantify the load supported by the knee ligaments during this task. The model was adapted to simulate the stair climbing and the loads distribution among the ligaments was assessed, trying to understand how ligament tensions are affected by the muscle forces produced in this specific task. The PCL and deep fibres of the MCL were the most loaded ligamentous structures, specifically during the mid-swing phase when the Hamstrings contract to counteract the forward limb acceleration. The ACL and fibrous capsule were predominantly recruited during the stance phase, consistently with the activity of the Gastrocnemii muscles. Conversely, the LCL and superficial MCL bundles stabilized the knee joint during the swing phase. Finally, in addition to the above-mentioned outcomes, this thesis emphasises that musculoskeletal modelling is a tool with great potential to investigate aspects that are difficult to evaluate in vivo, but which are crucial for a comprehensive understanding of knee joint biomechanics under different dynamic conditions.
Gesti motori quotidiani, come camminare o salire le scale, nonostante la loro apparente semplicità, comportano interazioni estremamente complesse a livello dell'articolazione del ginocchio. In questa sofisticata struttura anatomica, i legamenti svolgono un ruolo fondamentale nel garantire la stabilità e la funzionalità del ginocchio: essi sono sufficientemente rigidi da prevenire la dislocazione articolare sotto carichi elevati, ma allo stesso tempo sono disposti in modo tale da garantire un ampio range di movimento nel piano sagittale (flessione-estensione del ginocchio). Da una prospettiva clinica, conoscere i carichi supportati dai legamenti del ginocchio durante le attività quotidiane e comprendere come essi siano influenzati dalle contrazioni muscolari faciliterebbe la comprensione sia della biomeccanica dell'articolazione fisiologica sia dei meccanismi alla base di molte lesioni e patologie del ginocchio. Queste informazioni sarebbero estremamente vantaggiose per la progettazione di programmi riabilitativi, strategie di prevenzione e interventi terapeutici più efficaci. Inoltre, essere consapevoli della distribuzione del carico sui legamenti del ginocchio potrebbe aiutare a migliorare i risultati chirurgici, fornendo criteri per la progettazione e l'allineamento degli impianti protesici. In aggiunta, essere in grado di prevedere come le alterazioni nella rigidezza dei legamenti o le variazioni delle forze muscolari influenzino la cinematica del ginocchio potrebbe facilitare l'identificazione di movimenti potenzialmente rischiosi per l’integrità articolare. In tal senso, molti studi sono stati condotti su cadavere, godendo del vantaggio di esaminare la reale anatomia e le reali proprietà meccaniche dei tessuti; tuttavia, risulta particolarmente difficoltoso replicare i carichi esterni e le forze muscolari presenti durante il movimento fisiologico. Le misurazioni in vivo, d'altra parte, incontrano sfide etiche e tecniche, e solitamente si limitano a quantificare le deformazioni dei legamenti piuttosto che la tensione sviluppata, e solo durante movimenti funzionali limitati. Date queste limitazioni, la modellazione muscoloscheletrica emerge come uno strumento cruciale per stimare la tensione generata dai legamenti del ginocchio, specialmente in condizioni dinamiche. Se il ruolo dei legamenti è ben noto in generale, pochi studi in realtà si sono concentrati sulla loro risposta durante attività dinamiche come camminare e salire le scale. Inoltre, gli studi esistenti spesso presentano risultati contrastanti, e i confronti sono ulteriormente complicati dal fatto che le funzioni di input ai modelli impiegati non sono rese note. Pertanto, questa tesi nasce dalla consapevolezza che conoscere i carichi sui legamenti dell'articolazione del ginocchio durante gesti motori dinamici sia importante sia in ambito scientifico che clinico. Questa ricerca mira anche ad affrontare le limitazioni degli approcci attuali e la scarsità di studi nella letteratura esistente. Pertanto, l'obiettivo principale di questa tesi è implementare un modello muscoloscheletrico tridimensionale dell'articolazione del ginocchio in grado di quantificare le tensioni dei legamenti, per approfondire la relazione tra i carichi dei legamenti e le forze muscolari nonché per prevedere l'effetto della modifica di un singolo elemento anatomico-funzionale sull'intera biomeccanica dell'articolazione. Nello specifico, questa tesi si è concentrata sul gesto locomotorio, esaminando l'articolazione del ginocchio in diverse condizioni. Successivamente, è stata approfondita la condizione del ginocchio intatto anche durante un'altra attività quotidiana, ossia la salita delle scale. Il primo passo è stato implementare un modello tridimensionale di un ginocchio intatto, poi applicato lungo tutto il processo di ricerca e adattato di volta in volta alle diverse condizioni simulate. Il modello del ginocchio, implementato nella piattaforma SimWise4D (DST, Canton, MI, USA), include femore, tibia, fibula e patella ottenuti da immagini di risonanza magnetica. La struttura legamentosa, inclusa la capsula, i legamenti crociati e collaterali, è stata simulata mediante 13 elementi elastici rettilinei con comportamento non lineare (elementi viscoelastici) e ciascun legamento è stato modellizzato come costituito da diversi fasci che potrebbero essere reclutati in modo diverso in diverse condizioni. Inoltre, sono stati implementati nel modello i principali gruppi muscolari che agiscono sull'articolazione del ginocchio (Quadricipite, Ischiocrurali e Gastrocnemio): ogni muscolo è stato simulato come un attuatore di forza controllato da una funzione in input, precedentemente stimata tramite il criterio di "minimizzazione della forza massima". Per quanto riguarda le prestazioni del modello implementato, i principali fenomeni ad oggi consolidati sui meccanismi dell'articolazione del ginocchio sono stati confermati nella simulazione dinamica del ciclo del passo: il meccanismo “screw-home”, lo spostamento posteriore del femore durante la flessione del ginocchio, il tipico andamento della forza di contatto tibio-femorale, gli effetti di carico/scarico sui legamenti crociati prodotti dalla contrazione di Quadricipite e Ischiocrurali. Inoltre, ulteriori sforzi sono stati indirizzati a valutare le prestazioni del modello in tutte le condizioni simulate, confrontando i risultati ottenuti con la letteratura esistente o fornendo spiegazioni biomeccaniche dettagliate. Nella prima applicazione del modello implementato, è stato simulato un ciclo del passo animando il modello del ginocchio intatto attraverso dati ottenuti dall’analisi del cammino. Grazie a questa simulazione dinamica, sono state quantificate le tensioni sviluppate dai legamenti ed è stato esaminato il ruolo dei diversi muscoli nel determinare tali carichi. Questo studio ha dimostrato che la contrazione del Quadricipite è la principale responsabile del carico sul Legamento Crociato Anteriore (LCA), mentre il gruppo muscolare degli Ischiocrurali provoca la tensione elevata sul Legamento Crociato Posteriore (LCP) durante la fase di volo. Invece, i legamenti collaterali, coerentemente con il loro orientamento longitudinale lungo il femore e la tibia, hanno mostrato una ridotta sensibilità alle contrazioni muscolari. Infine, la ricerca sul ginocchio intatto si è conclusa con la simulazione dei test clinico-funzionali, permettendo la valutazione di rigidezza e lassità articolare e delle risposte dei legamenti alle diverse manovre. Il passo successivo di questa ricerca è stato appositamente progettato per colmare una lacuna nella letteratura riguardo agli effetti del sacrifico del LCA sulla cinematica del ginocchio durante il cammino. Pertanto, il LCA è stato rimosso dal modello del ginocchio ed è stata eseguita una simulazione dinamica del ciclo del passo. È emerso che, in assenza del LCA, i fasci superficiali e profondi del Legamento Collaterale Mediale (LCM) diventano i principali stabilizzatori passivi della traslazione anteriore della tibia. Inoltre, questo studio ha dimostrato che la riduzione dell'attività del Quadricipite, responsabile della parziale atrofia nel tempo, trova la sua efficacia nella riduzione dei carichi di tutti i restanti legamenti ad eccezione del LCP. Successivamente, un nuovo studio è stato progettato per colmare un'ulteriore lacuna: a causa della rarità di lesioni isolate del LCP, la letteratura scientifica è ancora carente di una comprensione completa dei cambiamenti innescati da tale lesione nella biomeccanica del ginocchio durante la deambulazione. Pertanto, sono state eseguite varie simulazioni del ciclo del passo esplorando diversi gradi di gravità di lesione del LCP. Tali analisi hanno consentito di esaminare la redistribuzione delle tensioni tra i legamenti restanti. I risultati ottenuti hanno mostrato che in caso di lesione del LCP, il LCM diventa il principale stabilizzatore contro la traslazione posteriore della tibia, supportato dal Legamento Collaterale Laterale (LCL). Nonostante questo meccanismo adattativo, la forza di contatto tibio-femorale è risultata aumentata rispetto alla condizione del ginocchio intatto e la tibia ha ancora sperimentato una traslazione posteriore, risultando in uno spostamento in avanti del punto di contatto tibio-femorale. Questo fenomeno chiarisce la comune insorgenza di degenerazione della cartilagine tibiale in pazienti affetti da lesione del LCP. Inoltre, da questo studio è emerso un ulteriore meccanismo compensatorio: la riduzione dell'attività degli Ischiocrurali sembrerebbe efficace nell’alleviare i restanti legamenti ulteriormente sollecitati per compensare il deficit del LCP, riducendo così la forza di contatto tra i condili femorali e i piatti tibiali. Successivamente, la ricerca è stata rivolta al ginocchio protesico: sebbene molti studi abbiano confrontato diversi design di impianti, non è stato trovato alcun riferimento ai cambiamenti indotti dalla presenza della protesi rispetto all'articolazione naturale. A tal fine, è stato introdotto nel modello di ginocchio una rappresentazione tridimensionale di protesi posteriormente-stabilizzata ed è stata eseguita una simulazione dinamica del ciclo del passo. Durante la simulazione del ciclo del passo, non è stato rilevato alcun contatto tra camma e asola. Questo risultato è stato ritenuto coerente considerando che, come riportato in letteratura e verificato da ulteriori simulazioni, l'angolo di flessione massimo del ginocchio raggiunto durante il ciclo del passo simulato era inferiore all'angolo di flessione richiesto per il contatto iniziale cam-post. Nella simulazione del ciclo del passo, tra i legamenti rimanenti, i fasci superficiali e profondi del LCM hanno supportato il carico più elevato, coerentemente con il fatto che in caso di deficit dei legamenti crociati, le strutture legamentose mediali diventano i principali stabilizzatori della traslazione anteriore-posteriore della tibia. Una volta esplorato ampiamente il gesto locomotorio, la ricerca si è spostata su un altro task svolto nella vita quotidiana, ossia la salita delle scale. Da un’indagine in letteratura è emerso che quello presentato in questa tesi sia il primo studio che cerca di quantificare il carico supportato dai legamenti del ginocchio durante questo atto motorio. Dunque, il modello è stato adattato per simulare la salita delle scale ed è stata valutata la distribuzione dei carichi tra i legamenti, cercando di comprendere come le tensioni legamentose siano influenzate dalle forze muscolari prodotte in questo specifico task. Dai risultati ottenuti è emerso che il LCP e le fibre profonde del LCM sono le strutture legamentose maggiormente sollecitate, particolarmente durante la fase di volo quando gli Ischiocrurali si contraggono per contrastare l'accelerazione in avanti della gamba. Il LCA e la capsula fibrosa sono prevalentemente reclutati durante la fase di appoggio, coerentemente con l'attività dei gemelli del Gastrocnemio. Al contrario, il LCL e i fasci superficiali del LCM stabilizzano l'articolazione del ginocchio durante la fase di volo. In conclusione, oltre ai principali risultati sopra riportati, questa tesi sottolinea che la modellazione muscoloscheletrica è uno strumento dotato di grande potenziale per indagare aspetti difficili da valutare in vivo, ma che sono cruciali per una comprensione completa della biomeccanica dell'articolazione del ginocchio in diverse condizioni dinamiche.
On the assessment of knee joint biomechanics and ligament tensions through a tailored musculoskeletal model
DONNO, LUCIA
2024/2025
Abstract
Daily activities, such as walking or climbing stairs, despite their apparent simplicity, involve extremely complex interactions at the knee joint level. In this intricate anatomical structure, the ligaments play a crucial role in ensuring the knee stability and functionality: they are rigid enough to prevent joint dislocation under high loads, but at the same time they are arranged in such a way as to ensure a wide range of motion in the sagittal plane. Understanding the loads supported by the knee ligaments during daily activities and how these loads are influenced by muscular contractions is crucial from a clinical perspective for several reasons. This knowledge can enhance our understanding of knee biomechanics and the mechanisms underlying knee injuries and diseases, which has several practical implications in both prevention and treatment. Furthermore, be aware of the load distribution among the knee ligaments could help to improve surgical outcomes, providing criteria for the design and alignment of knee prosthetic implants. Moreover, being able to predict how alterations in ligament stiffness or changes in muscular forces affect the knee kinematics could facilitate the identification of potential high-risk movements. In this sense, many studies have been conducted on cadavers, enjoying the advantage of examining real anatomy and real mechanical properties of tissues; however, they face challenges in replicating the external loads and muscle forces present during physiological movement. On the other hand, in vivo measurements face ethical and technical challenges, generally quantifying ligament strains rather than tension and only during limited functional movements. Given these limitations, musculoskeletal modelling emerges as a crucial tool for estimating the tension generated by knee ligaments, especially under dynamic conditions. While the general role of ligaments is well understood, relatively few studies have focused on their response during dynamic activities like walking and stair climbing. Additionally, existing studies often present conflicting results, and comparisons are further complicated because the input functions for the models are not disclosed. Thus, this thesis originates from the awareness that knowing the knee joint ligament loads during dynamic tasks is significant for both scientific and clinical fields. This research also aims to address the limitations of current approaches and the paucity of studies in the existing literature. Hence, the main goal of this thesis is to implement a three-dimensional musculoskeletal model of the knee joint able to quantify ligament tensions, to deepen the relationship between the ligament loads and the muscle forces as well as to predict the effect of a single element modification on the whole joint biomechanics. Specifically, this thesis focused on the walking task, examining the knee joint under different conditions. Then, the intact knee condition was also examined during another common daily activity: stair climbing. The first step was to implement a three-dimensional model of an intact knee joint, then applied all along the research process and adapted from time to time to the different simulated conditions. The knee model, implemented in the SimWise4D platform (DST, Canton, MI, USA), includes femur, tibia, fibula and patella obtained from magnetic resonance images. The ligamentous structure, including capsule, cruciate and collateral ligaments, was simulated by means of 13 straight springs with nonlinear behaviour (viscoelastic elements) and each ligament was modelled as consisting of several fascicles which could be recruited differently under different conditions. The main muscles acting on the knee joint (Quadriceps, Hamstrings and Gastrocnemii muscle groups) were included into the model: each muscle was modelled as a force actuator controlled by input functions estimated by the "minimization of the maximum force" criterion. As for the performance of the implemented model, the main consolidated phenomena about the knee joint mechanisms were confirmed in the simulation of the gait cycle: the screw home mechanism, the posterior displacement of the femur during the knee flexion, the typical pattern of the tibial-femoral contact force, the loading/unloading effects on the cruciate ligaments produced by the contraction of Quadriceps and Hamstrings. Additionally, further efforts have been made to evaluate the model's performance under all simulated conditions. This has been achieved by comparing the obtained results with existing literature or providing detailed biomechanical explanations. In the first application of the implemented model, a gait cycle was simulated animating the intact knee model through data obtained from motion capture. The tension developed by the ligaments were quantified and the role of the different muscles in determining the ligament loads was examined. This study showed that the Quadriceps contraction is the main responsible for the Anterior Cruciate Ligament (ACL) loading, while the Hamstrings muscle group is the primary contributor to the high tension on the Posterior Cruciate Ligament (PCL), specifically during the swing phase. The collateral ligaments, consistently with their longitudinal arrangement along the femur and the tibia, showed a reduced sensitivity to muscle contractions. Finally, the research on the intact knee concludes with the simulation of clinical-functional tests, allowing for the assessment of the joint stiffness and laxity and ligament responses to the different manoeuvres. The next step in the research aimed to fill a gap in the literature regarding the impact of ACL sacrifice on knee kinematics during walking. Thus, the ACL was removed from the knee model and a dynamic simulation of the gait cycle was performed. It was found that the superficial and deep bundles of the Medial Collateral Ligament (MCL) become the main passive stabilizers to the anterior translation of the tibia when the ACL is missing. It was also demonstrated that the reduction in the Quadriceps activity, leading to partial atrophy over time, finds its effectiveness in reducing the loads of all the remaining ligaments except for the PCL. A further study was designed to bridge another scientific gap: due to the rarity of isolated PCL injuries, the literature still lacks a comprehensive understanding of the changes in knee joint biomechanics during walking. Hence, many simulations of the gait cycle were performed exploring different degrees of PCL injury severity and the redistribution of internal loads among the remaining ligaments was assessed. The obtained results showed that in case of PCL lesion, the MCL becomes the primary stabiliser against the posterior tibial translation, supported by the Lateral Collateral Ligament (LCL). Despite this adaptive mechanism, the tibial-femoral contact force appeared increased compared to the intact knee condition and the tibia still experienced posterior displacement, resulting in a forward shift of the tibial-femoral contact point. This phenomenon clarifies the common occurrence of tibial cartilage degeneration in PCL-injured knees. Moreover, another compensatory mechanism emerged from this study: reducing Hamstring activity could relieve the remaining ligaments compensating for the PCL deficit, thereby reducing the contact force between the distal femur and proximal tibia. Subsequently, an additional research question was explored by examining the prosthetic knee: although many studies have compared different implant designs, no reference was found to the changes induced with respect to the natural knee joint. For this purpose, a posterior-stabilized prosthesis was virtually implanted in the three-dimensional musculoskeletal model and a dynamic simulation of the gait cycle was run. No cam-post engagement was detected during the gait cycle simulation, and this is consistent considering that the maximum knee flexion angle achieved during the simulated gait cycle was smaller than the flexion angle required for initial cam-post contact, as reported in the literature and verified by further simulations. Among the remaining ligaments, the superficial and deep bundles of MCL supported the highest load, consistently with the fact that in case of cruciate ligaments deficiency, the medial ligamentous structures become the primary stabilizers to the anterior-posterior tibial translation. Once the walking task was extensively explored, the research shifted to another task typically performed in daily life: climbing stairs. To the author’s best knowledge, this is the first study trying to quantify the load supported by the knee ligaments during this task. The model was adapted to simulate the stair climbing and the loads distribution among the ligaments was assessed, trying to understand how ligament tensions are affected by the muscle forces produced in this specific task. The PCL and deep fibres of the MCL were the most loaded ligamentous structures, specifically during the mid-swing phase when the Hamstrings contract to counteract the forward limb acceleration. The ACL and fibrous capsule were predominantly recruited during the stance phase, consistently with the activity of the Gastrocnemii muscles. Conversely, the LCL and superficial MCL bundles stabilized the knee joint during the swing phase. Finally, in addition to the above-mentioned outcomes, this thesis emphasises that musculoskeletal modelling is a tool with great potential to investigate aspects that are difficult to evaluate in vivo, but which are crucial for a comprehensive understanding of knee joint biomechanics under different dynamic conditions.File | Dimensione | Formato | |
---|---|---|---|
PhD Thesis Lucia Donno.pdf
non accessibile
Descrizione: PhD Thesis Lucia Donno
Dimensione
14.22 MB
Formato
Adobe PDF
|
14.22 MB | Adobe PDF | Visualizza/Apri |
I documenti in POLITesi sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.
https://hdl.handle.net/10589/231812