In recent decades, significant attention has been given to exploiting biomass as an important and renewable source of energy, in line with the guidelines and objectives of REPowerEU. In this context, anaerobic digestion stands out as the process that converts biomass and waste into biogas, a mixture of methane and carbon dioxide, which can effectively replace fossil-derived natural gas. However, the exploitation of this technology from the industrial point of view is yet to be establish, and the stable and abundant production of biomethane (i.e., the upgraded biogas with >97%vol. of CH4) is the principal aim of the current developments in the field of research and innovation. Therefore, in this work, the optimization of such a process has been pursuit, towards the possibility to make this technology more available for energy and chemical industries, nevertheless for small realities as agricultural sites and consortia. For this scope, three different yet combined models have been elaborated. These allow to simulate the anaerobic digestion of different and specifically characterized substrates from different perspectives: the optimization of the influent blending is the first step, as it can be defined an optimal composition of the feedstock based on the weighted fraction of the different substrates composing it. The model aims to optimize the spectrum of the macromolecules, evaluating parameters as the acidity to alkalinity (VT) and C/N ratios, to find the mixture that maximize the yield of biomethane and assure process stability. Furthermore, the information achieved can be input to a mathematical model and that, exploiting the concepts of the reactor networking, aims to simulate the complete behavior anaerobic digestion through a very detailed kinetic scheme, comprehensive of all the kinetic constants and parameters necessary to represent the process trustworthy. Finally, a thermodynamic model, which exploit a newly hybrid algorithm that unify cubic and multi-parameters equation of states, is called to solve the vapor-to-liquid equilibrium and establish the exact composition of the biogas, in terms of CO2, H2S, CH4 and H2O. Each of these models can be used singularly or together, as sub-model of a bigger one, and can guide the users from the feasibility study towards the final step of the front-end design.
Negli ultimi decenni si è prestata molta attenzione allo sfruttamento della biomassa come fonte energetica importante e rinnovabile, in linea con le linee guida e gli obiettivi di REPowerEU. In questo contesto, la digestione anaerobica si distingue come il processo che converte la biomassa e i rifiuti in biogas, una miscela di metano e anidride carbonica, che può sostituire efficacemente il gas naturale di origine fossile. Tuttavia, lo sfruttamento di questa tecnologia dal punto di vista industriale deve ancora essere stabilito e la produzione stabile e abbondante di biometano (cioè il biogas aggiornato con >97%vol. di CH4) è l'obiettivo principale degli attuali sviluppi nel campo della ricerca e dell'innovazione. Pertanto, in questo lavoro, si è perseguita l'ottimizzazione di tale processo, verso la possibilità di rendere questa tecnologia più disponibile per le industrie energetiche e chimiche, ma anche per piccole realtà come siti agricoli e consorzi. A questo scopo, sono stati elaborati tre modelli diversi ma combinati tra loro. Questi permettono di simulare la digestione anaerobica di substrati diversi e specificamente caratterizzati da diverse prospettive: l'ottimizzazione della miscelazione dell'influente è il primo passo, in quanto si può definire una composizione ottimale della materia prima in base alla frazione ponderata dei diversi substrati che la compongono. Il modello mira a ottimizzare lo spettro delle macromolecole, valutando parametri come l'acidità/alcalinità (VT) e i rapporti C/N, per trovare la miscela che massimizza la resa di biometano e assicura la stabilità del processo. Inoltre, le informazioni ottenute possono essere inserite in un modello matematico che, sfruttando i concetti del reattore in rete, mira a simulare il comportamento completo della digestione anaerobica attraverso uno schema cinetico molto dettagliato, completo di tutte le costanti e i parametri cinetici necessari a rappresentare il processo in modo affidabile. Infine, un modello termodinamico, che sfrutta un nuovo algoritmo ibrido che unifica equazioni di stato cubiche e multiparametriche, è chiamato a risolvere l'equilibrio vapore-liquido e a stabilire l'esatta composizione del biogas, in termini di CO2, H2S, CH4 e H2O. Ognuno di questi modelli può essere utilizzato singolarmente o insieme, come sotto-modello di un modello più grande, e può guidare gli utenti dallo studio di fattibilità fino alla fase finale della progettazione frontale.
A comprehensive approach towards the modeling and optimization of biogas fermentation processes
Moretta, Federico
2024/2025
Abstract
In recent decades, significant attention has been given to exploiting biomass as an important and renewable source of energy, in line with the guidelines and objectives of REPowerEU. In this context, anaerobic digestion stands out as the process that converts biomass and waste into biogas, a mixture of methane and carbon dioxide, which can effectively replace fossil-derived natural gas. However, the exploitation of this technology from the industrial point of view is yet to be establish, and the stable and abundant production of biomethane (i.e., the upgraded biogas with >97%vol. of CH4) is the principal aim of the current developments in the field of research and innovation. Therefore, in this work, the optimization of such a process has been pursuit, towards the possibility to make this technology more available for energy and chemical industries, nevertheless for small realities as agricultural sites and consortia. For this scope, three different yet combined models have been elaborated. These allow to simulate the anaerobic digestion of different and specifically characterized substrates from different perspectives: the optimization of the influent blending is the first step, as it can be defined an optimal composition of the feedstock based on the weighted fraction of the different substrates composing it. The model aims to optimize the spectrum of the macromolecules, evaluating parameters as the acidity to alkalinity (VT) and C/N ratios, to find the mixture that maximize the yield of biomethane and assure process stability. Furthermore, the information achieved can be input to a mathematical model and that, exploiting the concepts of the reactor networking, aims to simulate the complete behavior anaerobic digestion through a very detailed kinetic scheme, comprehensive of all the kinetic constants and parameters necessary to represent the process trustworthy. Finally, a thermodynamic model, which exploit a newly hybrid algorithm that unify cubic and multi-parameters equation of states, is called to solve the vapor-to-liquid equilibrium and establish the exact composition of the biogas, in terms of CO2, H2S, CH4 and H2O. Each of these models can be used singularly or together, as sub-model of a bigger one, and can guide the users from the feasibility study towards the final step of the front-end design.File | Dimensione | Formato | |
---|---|---|---|
PhD_Thesis_Federico_Moretta.pdf
accessibile in internet solo dagli utenti autorizzati
Dimensione
6.72 MB
Formato
Adobe PDF
|
6.72 MB | Adobe PDF | Visualizza/Apri |
I documenti in POLITesi sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.
https://hdl.handle.net/10589/232132