Therapeutic oligonucleotides (ONs) hold significant promise for treating severe diseases by regulating gene expression. However, an efficient process for the purification of the target sequence from molecularly similar variants during large-scale manufacturing is still missing, which is crucial for cost-effective production. Multicolumn Countercurrent Solvent Gradient Purification (MCSGP) offers a valuable solution allowing to overcome the purity- yield trade-off of single-column chromatographic methods, thereby enhancing both economic and environmental sustainability. The aim of this PhD thesis is to develop, for the first time, an efficient and robust MCSGP process for the purification of a 20mer single-stranded DNA. At first, anion-exchange (AIEX) stationary phases were adopted and MCSGP was designed starting from a batch experiment to comparatively evaluate the gain achieved when moving to continuous countercurrent operations. The subsequent step involves the implementation of MCSGP with reversed-phase (RP) stationary phases and the comparison of its performance with AIEX. Given the enhanced purity achieved with RP MCSGP, this process was selected for the development of a novel dynamic controller allowing to boost its robustness. Indeed, optimizing MCSGP can be complex, leading to process instability, particularly during prolonged runs. This study showcases the enhancement of process robustness in MCSGP by application of a UV-based dynamic control, which regulates the characteristic times for product collection and for recycling of the impure side fractions cycle- by-cycle. By employing this innovative approach, cyclic steady state is achieved by the third cycle, and disturbances from variations in feed quality, loading amount, and temperature are effectively mitigated, enabling stable operation near the optimum. Finally, the performance of the resins exploited for the implementation of MCSGP, both in AIEX and RP mode, is compared with those of competitor materials. A full side-by-side comparison is made for the Biopro IEX Smartsep (YMC) and two competitor resins: the TSK Gel and the SOURCE Q. In this case, the focus is more towards the investigation in overloading conditions, in which a peculiar phenomenon identified as ON irreversible adsorption to the resin particles has been detected for the two latter stationary phases. With similar criteria, the Triart C18-S (YMC) performance is compared to the one obtained with the DAISOGEL C18. Hereby, at first the adsorption behavior of the oligonucleotide is deepened for both resins. This is done in dilute condition because the affinity of the molecule of interest towards the stationary phase can be assessed with no competitive behavior for the adsorption on the pores of the matrix. Afterwards, a characterization in overloaded conditions is made to compare the performances on both stationary phases once the adsorption behavior is governed by non-linear kinetics.
Gli oligonucleotidi terapeutici (ON) rappresentano una promettente soluzione per il trattamento di malattie gravi grazie alla loro capacità di modulare l'espressione genica. Tuttavia, ci sono ancora lacune relativamente all’efficacia del processo per purificare la sequenza target dalle impurezze durante la produzione su larga scala, e ciò risulta un aspetto cruciale per garantire una produzione economica e sostenibile. La purificazione tramite MCSGP si propone come una valida alternativa, capace di superare il trade-off tra purezza e resa dei metodi cromatografici a colonna singola. L’obiettivo di questa tesi di dottorato è sviluppare, per la prima volta, un processo MCSGP robusto ed efficiente per la purificazione di un DNA a catena singola composto da 20 nucleotidi. In una prima parte del lavoro, sono state utilizzate fasi stazionarie a scambio anionico (AIEX) e il processo MCSGP è stato progettato partendo da esperimenti batch per poi valutare i miglioramenti delle performance derivanti dal passaggio all’operazione in continuo. Successivamente, è stato implementato il processo MCSGP con fasi stazionarie a fase inversa (RP) e ne sono state confrontate le performance con quelle ottenute utilizzando AIEX. Considerando la maggiore purezza raggiunta con MCSGP RP, questo processo è stato scelto per lo sviluppo di un controllore dinamico innovativo, finalizzato a migliorarne la robustezza. Infatti, l'ottimizzazione di MCSGP può risultare complessa e portare a instabilità, specialmente durante le operazioni prolungate. Lo studio illustra come l'applicazione di un controllo dinamico basato su UV consenta di regolare i tempi caratteristici per la raccolta del prodotto e per il riciclo delle frazioni impure ciclo dopo ciclo, aumentando la stabilità del processo. Grazie a questa metodologia, si raggiunge uno stato stazionario già al terzo ciclo, e le perturbazioni derivanti da variazioni nella qualità del feed, nella quantità di carico del crudo e nella temperatura vengono efficacemente ridotte, consentendo un'operazione stabile vicino all'ottimo. Infine, sono state confrontate le performance che si possono ottenere con le fasi stazionarie utilizzate per implementare MCSGP, sia in modalità AIEX che RP, con resine concorrenti. È stato effettuato un confronto approfondito tra la resina Biopro IEX Smartsep (YMC) e due resine concorrenti: la TSK Gel e la SOURCE Q. In particolare, l'analisi si è concentrata sulle condizioni di sovraccarico, nelle quali è stato osservato un fenomeno di adsorbimento irreversibile dell'ON sulle particelle delle resine concorrenti. In un ulteriore confronto, le performance della resina Triart C18-S (YMC) sono state messe a confronto con quelle della DAISOGEL C18. In questo caso, si è prima analizzato il comportamento di adsorbimento dell'oligonucleotide per entrambe le resine in condizioni diluite, per escludere effetti di competizione per l'adsorbimento nei pori della matrice. Successivamente, è stata effettuata una caratterizzazione in condizioni di sovraccarico per confrontare le prestazioni delle due fasi stazionarie, quando l'adsorbimento è governato da cinetiche non lineari.
Design and optimization of chromatographic processes based on multicolumn countercurrent solvent gradient purification (MCSGP) for the polishing of an oligonucleotide sequence
Fioretti, Ismaele
2024/2025
Abstract
Therapeutic oligonucleotides (ONs) hold significant promise for treating severe diseases by regulating gene expression. However, an efficient process for the purification of the target sequence from molecularly similar variants during large-scale manufacturing is still missing, which is crucial for cost-effective production. Multicolumn Countercurrent Solvent Gradient Purification (MCSGP) offers a valuable solution allowing to overcome the purity- yield trade-off of single-column chromatographic methods, thereby enhancing both economic and environmental sustainability. The aim of this PhD thesis is to develop, for the first time, an efficient and robust MCSGP process for the purification of a 20mer single-stranded DNA. At first, anion-exchange (AIEX) stationary phases were adopted and MCSGP was designed starting from a batch experiment to comparatively evaluate the gain achieved when moving to continuous countercurrent operations. The subsequent step involves the implementation of MCSGP with reversed-phase (RP) stationary phases and the comparison of its performance with AIEX. Given the enhanced purity achieved with RP MCSGP, this process was selected for the development of a novel dynamic controller allowing to boost its robustness. Indeed, optimizing MCSGP can be complex, leading to process instability, particularly during prolonged runs. This study showcases the enhancement of process robustness in MCSGP by application of a UV-based dynamic control, which regulates the characteristic times for product collection and for recycling of the impure side fractions cycle- by-cycle. By employing this innovative approach, cyclic steady state is achieved by the third cycle, and disturbances from variations in feed quality, loading amount, and temperature are effectively mitigated, enabling stable operation near the optimum. Finally, the performance of the resins exploited for the implementation of MCSGP, both in AIEX and RP mode, is compared with those of competitor materials. A full side-by-side comparison is made for the Biopro IEX Smartsep (YMC) and two competitor resins: the TSK Gel and the SOURCE Q. In this case, the focus is more towards the investigation in overloading conditions, in which a peculiar phenomenon identified as ON irreversible adsorption to the resin particles has been detected for the two latter stationary phases. With similar criteria, the Triart C18-S (YMC) performance is compared to the one obtained with the DAISOGEL C18. Hereby, at first the adsorption behavior of the oligonucleotide is deepened for both resins. This is done in dilute condition because the affinity of the molecule of interest towards the stationary phase can be assessed with no competitive behavior for the adsorption on the pores of the matrix. Afterwards, a characterization in overloaded conditions is made to compare the performances on both stationary phases once the adsorption behavior is governed by non-linear kinetics.File | Dimensione | Formato | |
---|---|---|---|
2024_12_Fioretti.pdf
non accessibile
Descrizione: Design and Optimization of Chromatographic Processes based on Multicolumn Countercurrent Solvent Gradient Purification (MCSGP) for the Polishing of an Oligonucleotide Sequence
Dimensione
6.08 MB
Formato
Adobe PDF
|
6.08 MB | Adobe PDF | Visualizza/Apri |
I documenti in POLITesi sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.
https://hdl.handle.net/10589/232152