The structural properties of a porous system (like soil, aquifers, but also filtration systems or biological tissues) control the way it can host fluid transfer. In particular the medium intrinsic permeability quantifies the relationship between average fluid velocity, moving across a porous system, and the pressure difference necessary to produce it. For spatially homogeneous systems there are models to predict the medium permeability from its macroscopic features (i.e. porosity and average grain size). The work summarized in this thesis investigates the long standing problem of determining the permeability of porous system characterized by a complex structure. The common challenge of all heterogeneous porous media is their multi-scale nature, associated to the wide range sizes and shapes their pores can have. For instance, the pore size of an individual sample can span between a few microns to a few millimeters. The thesis is organized in an introduction, 3 research chapters and a conclusion. In the first research chapter, I present a model to characterize the intrinsic permeability of porous media with variable pore sizes. To validate this model, I designed and performed microfluidic experiments with several porous structure of random (but controlled) pore size distribution. While traditional models cannot predict the permeability of heterogeneous porous structures, my model can. It explicitly embeds the spatial variability of pore sizes through a conceptualization of the system as a collection of smaller-scale porous media arranged in series. The second research chapter is devoted to the exploration biofilm growth in porous media. In the first part of this chapter I present a study on how microbial biofilm takes place and affects flow within porous environments characterized by variable pore size. Through systematic microfluidic experimentation and time-lapse microscopy, I show that biofilm development (by individual bacterial cells division), influenced by flow velocity and nutrient availability, significantly alters the macroscopic structure by reducing the individual pores, eventually leading to localized clogging which changes the permeability. The interplay between biofilm accumulation and flow conditions results in dynamic permeability variations, which are captured through a predictive model, that I developed, which accurately reflects biofilm-induced clogging over time. The second part of this chapter investigates the biochemical mechanisms that govern bacterial behavior within porous media characterized by grains with different shape (instead of different size). I explored how flow-mediated interactions allow the bacterium Escherichia coli sp. to colonize a porous structure that is composed of heterogeneous dead-end pores (DEPs, or single grain cavities) and connecting percolating channels, i.e. transmitting pores (TPs, space among grains), mimicking the structured surface of mammalian guts or some soil structures. In presence of flow, gradients of the quorum sensing (QS) signaling molecule autoinducer-2 (AI-2), secreted by the cells, themselves promote E. coli chemotactic accumulation in the DEPs. This results in hot-spots of accumulation where Quorum Sensing happens, triggering rapid growth and mechanical evasion of biomass from nutrients and oxygen depleted DEPs. The last research chapter investigates the impact of rocks microscopic-scale dissolution process on their structural heterogeneity and, thus, macroscopic permeability. The investigation is carried out via i) two-dimensional numerical simulations and ii) microfluidics experiments designed to directly visualize the individual dissolution of grains, while monitoring the overall, macroscopic, system permeability. I observe how the structure of a porous system changes due to dissolution and I show that the model proposed in the second chapter captures the effect of these dynamical changes on the system permeability. In conclusion, I developed theoretical models and experimental tools to investigate how the spatially variable (heterogeneous) structure of a porous system controls fluid transfer (permeability) and how, in turn, flow-driven processes (like biofilm growth or rock dissolution) modify the porous structure and, thus, its permeability.
Le proprietà strutturali di un sistema poroso (come il suolo, le falde acquifere, ma anche i sistemi di filtrazione o i tessuti biologici) controllano il modo in cui può ospitare il trasferimento di fluidi (flusso). In particolare, la permeabilità intrinseca del mezzo quantifica la relazione tra la velocità media del fluido, che si muove attraverso un sistema poroso, e la differenza di pressione necessaria per produrla. Per sistemi spazialmente omogenei, esistono modelli per prevedere la permeabilità del mezzo dalle sue caratteristiche macroscopiche (ad esempio porosità e dimensione media dei grani). Il lavoro riassunto in questa tesi indaga il problema di determinare la permeabilità di un sistema poroso caratterizzato da una struttura complessa. La complessit\'a comune a tutti i mezzi porosi eterogenei è la loro natura multiscala, associata all'ampia gamma di dimensioni e forme che i loro pori possono avere. Ad esempio, la dimensione dei pori di un singolo campione può variare da pochi micron a pochi millimetri. La tesi è organizzata in un'introduzione, 3 capitoli di ricerca e una conclusione. Nel primo capitolo di ricerca, presento un modello per caratterizzare la permeabilità intrinseca di mezzi porosi con dimensioni dei pori variabili. Per convalidare questo modello, ho progettato ed eseguito esperimenti microfluidici con diverse strutture porose caratterizzate da distribuzioni casuali (ma controllate) delle dimensioni dei pori. Mentre i modelli tradizionali non possono prevedere la permeabilità di strutture porose eterogenee, il mio modello può farlo. Incorpora esplicitamente la variabilità spaziale delle dimensioni dei pori attraverso la concettualizzazione del sistema come una serie di mezzi porosi consecutivi. Il secondo capitolo di ricerca è dedicato all'esplorazione della crescita del biofilm nei mezzi porosi. Nella prima parte di questo capitolo presento uno studio su come un biofilm batterico cresce e influenza il flusso all'interno di ambienti porosi. Attraverso la sperimentazione microfluidica e la microscopia ottica, mostro che lo sviluppo del biofilm (mediante la divisione delle singole cellule batteriche) \'e influenzato dalla velocità del flusso e dalla disponibilità di nutrienti e altera significativamente la struttura porosa riducendo i singoli pori, portando alla loro ostruzione che modifica la permeabilità. L'interazione tra accumulo di biofilm e condizioni di flusso determina variazioni dinamiche della permeabilità, che vengono catturate tramite un modello predittivo da me sviluppato, che riflette accuratamente l'intasamento indotto dal biofilm nel tempo. La seconda parte di questo capitolo esamina alcuni inmportanti meccanismi bio-chmici che governano il comportamento batterico all'interno di mezzi porosi caratterizzati da grani di forma diversa (invece che di dimensioni diverse). Ho esplorato come le interazioni mediate dal flusso consentano al batterio Escherichia coli sp. di colonizzare una struttura porosa composta da pori senza sfondo (Dead End Pores, che sono cavità in singolo grano) e canali di percolazione, ovvero pori di trasmissione (Transmitting Pores, spazio tra i grani), che imitano la superficie dell'intestino dei mammiferi o alcune strutture del suolo. In presenza di flusso, i gradienti della molecola del quorum sensing (QS), autoinduttore-2 (AI-2), secreta dalle cellule stesse, promuovono di l'accumulo chemiotattico di E. coli nei DEP. Ciò determina hot-spot di accumulo in cui avviene il Quorum Sensing, innescando una rapida crescita e l'evasione meccanica della biomassa dai DEP impoveriti di nutrienti e ossigeno. L'ultimo capitolo della tesi indaga l'impatto del processo di dissoluzione su scala microscopica delle rocce sulla loro eterogeneità strutturale e, quindi, sulla loro permeabilità. L'indagine viene condotta tramite i) simulazioni numeriche bidimensionali e ii) esperimenti di microfluidica progettati per visualizzare direttamente la dissoluzione individuale dei grani, monitorando al contempo la permeabilità macroscopica del sistema. Osservo come la struttura di un sistema poroso cambia a causa della dissoluzione e mostro che il modello proposto nel secondo capitolo cattura l'effetto di questi cambiamenti dinamici sulla permeabilità del sistema. In conclusione, ho sviluppato modelli teorici e strumenti sperimentali per studiare come la struttura spazialmente variabile (eterogenea) di un sistema poroso controlli il trasferimento del fluido (permeabilità) e come, a loro volta, i processi guidati dal flusso (come la crescita del biofilm o la dissoluzione della roccia) modificano la struttura porosa e, quindi, la sua permeabilità.
Structural heterogeneity and permeability of porous media
JIAO, WENQIAO
2024/2025
Abstract
The structural properties of a porous system (like soil, aquifers, but also filtration systems or biological tissues) control the way it can host fluid transfer. In particular the medium intrinsic permeability quantifies the relationship between average fluid velocity, moving across a porous system, and the pressure difference necessary to produce it. For spatially homogeneous systems there are models to predict the medium permeability from its macroscopic features (i.e. porosity and average grain size). The work summarized in this thesis investigates the long standing problem of determining the permeability of porous system characterized by a complex structure. The common challenge of all heterogeneous porous media is their multi-scale nature, associated to the wide range sizes and shapes their pores can have. For instance, the pore size of an individual sample can span between a few microns to a few millimeters. The thesis is organized in an introduction, 3 research chapters and a conclusion. In the first research chapter, I present a model to characterize the intrinsic permeability of porous media with variable pore sizes. To validate this model, I designed and performed microfluidic experiments with several porous structure of random (but controlled) pore size distribution. While traditional models cannot predict the permeability of heterogeneous porous structures, my model can. It explicitly embeds the spatial variability of pore sizes through a conceptualization of the system as a collection of smaller-scale porous media arranged in series. The second research chapter is devoted to the exploration biofilm growth in porous media. In the first part of this chapter I present a study on how microbial biofilm takes place and affects flow within porous environments characterized by variable pore size. Through systematic microfluidic experimentation and time-lapse microscopy, I show that biofilm development (by individual bacterial cells division), influenced by flow velocity and nutrient availability, significantly alters the macroscopic structure by reducing the individual pores, eventually leading to localized clogging which changes the permeability. The interplay between biofilm accumulation and flow conditions results in dynamic permeability variations, which are captured through a predictive model, that I developed, which accurately reflects biofilm-induced clogging over time. The second part of this chapter investigates the biochemical mechanisms that govern bacterial behavior within porous media characterized by grains with different shape (instead of different size). I explored how flow-mediated interactions allow the bacterium Escherichia coli sp. to colonize a porous structure that is composed of heterogeneous dead-end pores (DEPs, or single grain cavities) and connecting percolating channels, i.e. transmitting pores (TPs, space among grains), mimicking the structured surface of mammalian guts or some soil structures. In presence of flow, gradients of the quorum sensing (QS) signaling molecule autoinducer-2 (AI-2), secreted by the cells, themselves promote E. coli chemotactic accumulation in the DEPs. This results in hot-spots of accumulation where Quorum Sensing happens, triggering rapid growth and mechanical evasion of biomass from nutrients and oxygen depleted DEPs. The last research chapter investigates the impact of rocks microscopic-scale dissolution process on their structural heterogeneity and, thus, macroscopic permeability. The investigation is carried out via i) two-dimensional numerical simulations and ii) microfluidics experiments designed to directly visualize the individual dissolution of grains, while monitoring the overall, macroscopic, system permeability. I observe how the structure of a porous system changes due to dissolution and I show that the model proposed in the second chapter captures the effect of these dynamical changes on the system permeability. In conclusion, I developed theoretical models and experimental tools to investigate how the spatially variable (heterogeneous) structure of a porous system controls fluid transfer (permeability) and how, in turn, flow-driven processes (like biofilm growth or rock dissolution) modify the porous structure and, thus, its permeability.File | Dimensione | Formato | |
---|---|---|---|
thesis.pdf
accessibile in internet per tutti a partire dal 08/01/2026
Descrizione: thesis
Dimensione
375.99 MB
Formato
Adobe PDF
|
375.99 MB | Adobe PDF | Visualizza/Apri |
I documenti in POLITesi sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.
https://hdl.handle.net/10589/232432