With the increasing demand for enhanced vehicle performance, handling, and energy efficiency, torque vectoring has become essential in automotive engineering, particularly for improving vehicle lateral dynamics and stability. This technology is further empowered by the transition to electric vehicles, which allow for distributed powertrain systems. This doctoral research introduces two innovative torque vectoring control strategies for vehicle lateral dynamics. The first strategy focuses on maximizing performance by integrating torque vectoring with active rear steering, employing an integral terminal second-order sliding mode controller that swiftly converges with minimal tracking error and avoids the typical chattering behaviour of traditional sliding mode controllers, as confirmed in simulations. The second strategy automatically prioritizes either vehicle handling or energy efficiency based on driving conditions. This is achieved through a careful design of the torque vectoring controller together with a detailed suspension tuning, with simulations showing the effectiveness of the proposed methodology in achieving good vehicle handling at cornering limits and good energy efficiency under normal driving conditions. Independently on the designed control strategy, torque vectoring introduces an imbalance in longitudinal forces at the front axle which can cause a steering torque that can corrupt the usual steering feeling and be detrimental for a nice driver experience. In view of this, the present work proposed an electric power steering control strategy to compensate for the steering feedback corruption, thus enabling a driver-centric deployment of torque vectoring control strategies. To further ground this driver-aware approach for torque vectoring control, another gap in the literature is addressed, being the inclusion of drivers’ subjective feedback in the evaluation of vehicle control algorithms. Therefore, a comprehensive assessment of different torque vectoring control logics has been performed through Driver-in-the-Loop simulations, allowing the seamless collection of subjective evaluations from drivers and objective indicators. The correlation results of the subjective-objective assessment provides insights into human perception of vehicle lateral dynamics, giving cues on the torque vectoring features that best support the driver according to a driver-centric approach suitable for production vehicles.
Con l'aumento della domanda di prestazioni, maneggevolezza ed efficienza energetica dei veicoli, il torque vectoring è diventato essenziale nell'ingegneria automobilistica, in particolare per migliorare la dinamica laterale e la stabilità dei veicoli. Questa tecnologia è ulteriormente potenziata dalla transizione verso i veicoli elettrici, che consentono l'implementazione di sistemi di propulsione distribuiti. Questa ricerca di dottorato introduce due innovative strategie di controllo torque vectoring per la dinamica laterale dei veicoli. La prima strategia si concentra sulla massimizzazione delle prestazioni integrando il torque vectoring con lo sterzo attivo delle ruote posteriori, utilizzando un controllore sliding mode del secondo ordine con terminale integrale, capace di convergere rapidamente anche con un errore minimo e di evitare il tipico fenomeno di chattering dei controllori sliding mode tradizionali, come confermato dalle simulazioni. La seconda strategia dà automaticamente priorità alla maneggevolezza del veicolo o all'efficienza energetica in base alle condizioni di guida. Questo è ottenuto attraverso un'attenta progettazione del controllore di torque vectoring insieme a una messa a punto dettagliata delle sospensioni, con simulazioni che dimostrano l'efficacia della metodologia proposta nell'ottenere una buona maneggevolezza del veicolo al limite di aderenza in curva e una buona efficienza energetica durante la guida normale. Indipendentemente dalla strategia di controllo progettata, il torque vectoring introduce uno squilibrio delle forze longitudinali sull'asse anteriore che può generare una coppia di sterzo, alterando la sensazione abituale di guida e compromettendo l'esperienza del conducente. In vista di ciò, il presente lavoro propone una strategia di controllo del servosterzo elettrico per compensare la distorsione del feedback dello sterzo, consentendo così un'implementazione delle strategie di controllo torque vectoring orientata al conducente. Per rafforzare ulteriormente questo approccio driver-centric, è stata affrontata un'altra lacuna nella letteratura, ovvero l'inclusione del feedback soggettivo dei conducenti nella valutazione degli algoritmi di controllo del veicolo. Pertanto, è stata condotta una valutazione completa di diverse logiche di controllo torque vectoring attraverso simulazioni Driver-in-the-Loop, permettendo la contemporanea raccolta di valutazioni soggettive dai conducenti e di indicatori oggettivi. I risultati della correlazione tra valutazioni soggettive e oggettive forniscono informazioni sulla percezione umana della dinamica laterale del veicolo, offrendo spunti sulle caratteristiche del torque vectoring che meglio supportano il conducente secondo un approccio driver-centric idoneo per veicoli di produzione.
Driver-aware torque vectoring control deployment to electric vehicles
Asperti, Michele
2024/2025
Abstract
With the increasing demand for enhanced vehicle performance, handling, and energy efficiency, torque vectoring has become essential in automotive engineering, particularly for improving vehicle lateral dynamics and stability. This technology is further empowered by the transition to electric vehicles, which allow for distributed powertrain systems. This doctoral research introduces two innovative torque vectoring control strategies for vehicle lateral dynamics. The first strategy focuses on maximizing performance by integrating torque vectoring with active rear steering, employing an integral terminal second-order sliding mode controller that swiftly converges with minimal tracking error and avoids the typical chattering behaviour of traditional sliding mode controllers, as confirmed in simulations. The second strategy automatically prioritizes either vehicle handling or energy efficiency based on driving conditions. This is achieved through a careful design of the torque vectoring controller together with a detailed suspension tuning, with simulations showing the effectiveness of the proposed methodology in achieving good vehicle handling at cornering limits and good energy efficiency under normal driving conditions. Independently on the designed control strategy, torque vectoring introduces an imbalance in longitudinal forces at the front axle which can cause a steering torque that can corrupt the usual steering feeling and be detrimental for a nice driver experience. In view of this, the present work proposed an electric power steering control strategy to compensate for the steering feedback corruption, thus enabling a driver-centric deployment of torque vectoring control strategies. To further ground this driver-aware approach for torque vectoring control, another gap in the literature is addressed, being the inclusion of drivers’ subjective feedback in the evaluation of vehicle control algorithms. Therefore, a comprehensive assessment of different torque vectoring control logics has been performed through Driver-in-the-Loop simulations, allowing the seamless collection of subjective evaluations from drivers and objective indicators. The correlation results of the subjective-objective assessment provides insights into human perception of vehicle lateral dynamics, giving cues on the torque vectoring features that best support the driver according to a driver-centric approach suitable for production vehicles.File | Dimensione | Formato | |
---|---|---|---|
MA_PhD_Thesis_Upload.pdf
solo utenti autorizzati a partire dal 04/02/2026
Descrizione: PhD_Thesis_MA
Dimensione
23.67 MB
Formato
Adobe PDF
|
23.67 MB | Adobe PDF | Visualizza/Apri |
I documenti in POLITesi sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.
https://hdl.handle.net/10589/232472