SINCE its approval by the FDA in 2005, thoracic endovascular aortic repair (TEVAR) has become the preferred treatment option for thoracic aorta and aortic arch pathologies as a minimally invasive technique and a safer alternative to the standard open repair. The procedure consists of releasing a self-expandable stent-graft inside the pathological region of the aorta through a catheter-based system to restore the vessel lumen. Stent-grafts are composed of a metallic nitinol stent sutured to a polymeric fabric graft. TEVAR has shown higher 30-day survival with respect to open repair, and the minimal invasiveness has made more people eligible for surgery. However, despite being a low-risk treatment, procedure-related complications make the mid and long-term benefits of TEVAR still unclear. As some device-related complications are associated with a sub-optimal apposition of the stent-graft to the aortic wall, the procedural success of TEVAR is strictly related to appropriate procedural planning in terms of stent-graft selection and stent-graft and aorta mechanical interaction. In recent years, there has been a growing emphasis within the engineering community on developing patient-specific in-silico models to study the TEVAR procedure, support pre-operative planning and evaluate device performance. However, a literature review revealed significant variability in the numerical models and modeling approaches used in TEVAR research. This thesis aims to fill this gap by developing a high-fidelity methodology for TEVAR using the finite element analysis (FEA) that can accurately replicate stent-graft implantation in patient-specific diseased aortic anatomies. The methodology is designed to assist clinicians in predicting actual intervention outcomes and investigating device-related TEVAR complications. The first step involves creating high-fidelity FEA models of the stent-graft and the TEVAR procedure. These models are then subjected to validation, verification, and applicability assessments based on regulatory guidelines (i.e., ASME V&V40). The models are validated through in-vitro crimping tests and stent-graft implantation into a rigid aortic phantom, with results showing excellent agreement between numerical simulations and experimental data. A preliminary proof-of-concept study highlighted the importance of incorporating vessel wall prestress in patient-specific modeling. To validate the methodology in real scenarios, retrospective simulations were performed on eight patient-specific anatomies and compared with post-operative computed tomography scan reconstructions. The results showed its capability in predicting short-term procedural outcomes in real clinical scenarios. The full potential of the in-silico TEVAR model was demonstrated through the application in a clinical case study, showcasing its ability to predict intra-operative complications. In conclusion, the approach followed in this doctoral research combines computational modeling with experimental validation and active collaboration between clinicians and engineers. This work advances our understanding of the TEVAR procedure and the interactions between stent-grafts and the aorta. The developed in-silico tool, along with the compatibility of the numerical workflow with TEVAR procedural planning timelines and the interest from the medical community, can be integrated into daily clinical practice.
A partire dall’approvazione da parte della FDA nel 2005, la riparazione endovascolare toracica dell'aorta (TEVAR) è diventata l'opzione di trattamento preferita per le patologie dell'aorta toracica e dell'arco aortico, grazie alla sua natura minimamente invasiva e alla maggiore sicurezza rispetto alla riparazione chirurgica tradizionale. La procedura prevede il rilascio di uno stent-graft auto espandibile nella regione patologica dell'aorta tramite un sistema a catetere, con l'obiettivo di ripristinare il lume del vaso. Gli stent-graft sono composti da uno stent in nitinol metallico cucito a un tessuto polimerico. Il TEVAR ha dimostrato una maggiore sopravvivenza a 30 giorni rispetto alla chirurgia a cielo aperto, e la sua mininvasività ha reso idonee all'intervento un numero maggiore di persone. Tuttavia, nonostante il basso rischio, le complicanze legate alla procedura sollevano dubbi sui benefici a medio e lungo termine del TEVAR. Alcune complicanze legate al dispositivo sono associate a una scarsa adesione dello stent-graft alla parete aortica, rendendo il successo del TEVAR strettamente dipendente da una pianificazione procedurale accurata, inclusa la selezione dello stent-graft e l'interazione meccanica tra stent-graft e aorta. Negli ultimi anni, la comunità ingegneristica ha posto crescente enfasi sullo sviluppo di modelli in-silico specifici per il paziente per studiare il TEVAR, supportare la pianificazione pre-operatoria e valutare le prestazioni dei dispositivi. Tuttavia, una revisione della letteratura ha evidenziato una notevole variabilità nei modelli numerici e negli approcci di modellazione utilizzati nella ricerca sul TEVAR. Questa tesi mira a colmare questa lacuna sviluppando una metodologia ad alta fedeltà per il TEVAR utilizzando l'analisi agli elementi finiti (FEA), in grado di replicare accuratamente l'impianto dello stent-graft in anatomie aortiche patologiche specifiche per il paziente. La metodologia è progettata per assistere i clinici nella previsione degli esiti reali dell'intervento e nell'indagine sulle complicanze legate al dispositivo. Il primo passo consiste nella creazione di modelli FEA ad alta fedeltà dello stent-graft e della procedura TEVAR. Questi modelli sono sottoposti a validazione, verifica e analisi di applicabilità secondo linee guida di enti regolatori (ad esempio, ASME V&V40). La validazione dei modelli avviene tramite test di crimpaggio in vitro e l'impianto dello stent-graft in un modello di aorta rigido stampato 3D rigido, con risultati che mostrano un'eccellente corrispondenza tra simulazioni numeriche e dati sperimentali. Uno studio preliminare ha sottolineato l'importanza di incorporare il prestress della parete del vaso nella modellazione specifica per il paziente. Per validare la metodologia in scenari reali, sono state eseguite simulazioni retrospettive su otto anatomie paziente-specifiche e confrontate con le ricostruzioni delle scansioni post-operatorie di tomografia computerizzata. I risultati hanno dimostrato la capacità della metodologia di prevedere gli esiti procedurali a breve termine in scenari clinici reali. Il pieno potenziale del modello in-silico TEVAR è stato dimostrato attraverso l'applicazione in uno studio clinico, evidenziando la sua capacità di prevedere complicanze intraoperatorie. In conclusione, l'approccio seguito in questa ricerca combina la modellazione computazionale con la validazione sperimentale e una collaborazione attiva tra clinici e ingegneri. Questo lavoro avanza la comprensione della procedura TEVAR e delle interazioni tra stent-graft e aorta. Lo strumento in-silico sviluppato, insieme alla compatibilità del workflow numerico con i tempi della pianificazione procedurale TEVAR e l'interesse della comunità medica, può essere integrato nella pratica clinica quotidiana.
In-silico high-fidelity modeling of endovascular aortic interventions
Ramella, Anna
2024/2025
Abstract
SINCE its approval by the FDA in 2005, thoracic endovascular aortic repair (TEVAR) has become the preferred treatment option for thoracic aorta and aortic arch pathologies as a minimally invasive technique and a safer alternative to the standard open repair. The procedure consists of releasing a self-expandable stent-graft inside the pathological region of the aorta through a catheter-based system to restore the vessel lumen. Stent-grafts are composed of a metallic nitinol stent sutured to a polymeric fabric graft. TEVAR has shown higher 30-day survival with respect to open repair, and the minimal invasiveness has made more people eligible for surgery. However, despite being a low-risk treatment, procedure-related complications make the mid and long-term benefits of TEVAR still unclear. As some device-related complications are associated with a sub-optimal apposition of the stent-graft to the aortic wall, the procedural success of TEVAR is strictly related to appropriate procedural planning in terms of stent-graft selection and stent-graft and aorta mechanical interaction. In recent years, there has been a growing emphasis within the engineering community on developing patient-specific in-silico models to study the TEVAR procedure, support pre-operative planning and evaluate device performance. However, a literature review revealed significant variability in the numerical models and modeling approaches used in TEVAR research. This thesis aims to fill this gap by developing a high-fidelity methodology for TEVAR using the finite element analysis (FEA) that can accurately replicate stent-graft implantation in patient-specific diseased aortic anatomies. The methodology is designed to assist clinicians in predicting actual intervention outcomes and investigating device-related TEVAR complications. The first step involves creating high-fidelity FEA models of the stent-graft and the TEVAR procedure. These models are then subjected to validation, verification, and applicability assessments based on regulatory guidelines (i.e., ASME V&V40). The models are validated through in-vitro crimping tests and stent-graft implantation into a rigid aortic phantom, with results showing excellent agreement between numerical simulations and experimental data. A preliminary proof-of-concept study highlighted the importance of incorporating vessel wall prestress in patient-specific modeling. To validate the methodology in real scenarios, retrospective simulations were performed on eight patient-specific anatomies and compared with post-operative computed tomography scan reconstructions. The results showed its capability in predicting short-term procedural outcomes in real clinical scenarios. The full potential of the in-silico TEVAR model was demonstrated through the application in a clinical case study, showcasing its ability to predict intra-operative complications. In conclusion, the approach followed in this doctoral research combines computational modeling with experimental validation and active collaboration between clinicians and engineers. This work advances our understanding of the TEVAR procedure and the interactions between stent-grafts and the aorta. The developed in-silico tool, along with the compatibility of the numerical workflow with TEVAR procedural planning timelines and the interest from the medical community, can be integrated into daily clinical practice.File | Dimensione | Formato | |
---|---|---|---|
2025_02_Ramella_PhDThesis.pdf
non accessibile
Descrizione: Ramella - PhD Thesis
Dimensione
69.01 MB
Formato
Adobe PDF
|
69.01 MB | Adobe PDF | Visualizza/Apri |
I documenti in POLITesi sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.
https://hdl.handle.net/10589/232513