The recent evolution of software and hardware technologies is leading to a renewed computational interest in Particle-In-Cell (PIC) methods such as the Material Point Method (MPM). Indeed, provided some critical aspects are properly handled, PIC methods can be cast in formulations suitable for the requirements of data locality and fine-grained parallelism of modern hardware accelerators such as Graphics Processing Units (GPUs). Such a rapid and continuous technological development increases also the importance of generic and portable implementations. While the capabilities of MPM on a wide-range continuum mechanics problem have already been well assessed, the use of the method in compressible fluid dynamics has received less attention. In this thesis we present a portable, highly parallel, GPU based MPM solver for compressible gas dynamics. The implementation aims to reach a good compromise between portability and efficiency to provide a first assessment of the potential of this approach in solving strongly compressible gas flow problems, and also to take into account solid obstacles. The numerical model considered constitutes a first step towards the development of a monolithic MPM solver for Fluid-Structure Interaction (FSI) problems at all Mach numbers up to the supersonic regime.
La recente evoluzione delle tecnologie software e hardware sta portando a un rinnovato interesse computazionale per i metodi Particle-In-Cell (PIC), come il Material Point Method (MPM). Infatti, a condizione che alcuni aspetti critici siano gestiti in modo appropriato, i metodi PIC possono essere formulati in formulazioni adatte ai requisiti di località dei dati e di parallelismo a grana fine dei moderni acceleratori hardware, come le unità di elaborazione grafica (GPU). Uno sviluppo tecnologico così rapido e continuo aumenta anche l'importanza di implementazioni generiche e portabili. Mentre le capacità dell'MPM su un'ampia gamma di problemi di meccanica dei continui sono già state ben valutate, l'uso del metodo nella fluidodinamica comprimibile ha ricevuto meno attenzione. In questa tesi si presenta un solutore MPM portabile, altamente parallelo e basato su GPU per la dinamica dei gas comprimibili. L'implementazione mira a raggiungere un buon compromesso tra portabilità ed efficienza, al fine di fornire una prima valutazione del potenziale di questo approccio nella risoluzione di problemi di flusso di gas fortemente comprimibili, tenendo conto anche di ostacoli solidi. Il modello numerico considerato costituisce un primo passo verso lo sviluppo di un solutore MPM monolitico per problemi di interazione fluido-struttura (FSI) a tutti i numeri di Mach fino al regime supersonico.
Material Point Method for compressible flows: a portable, massively parallel implementation for HPC architectures
Baioni, Paolo Joseph
2024/2025
Abstract
The recent evolution of software and hardware technologies is leading to a renewed computational interest in Particle-In-Cell (PIC) methods such as the Material Point Method (MPM). Indeed, provided some critical aspects are properly handled, PIC methods can be cast in formulations suitable for the requirements of data locality and fine-grained parallelism of modern hardware accelerators such as Graphics Processing Units (GPUs). Such a rapid and continuous technological development increases also the importance of generic and portable implementations. While the capabilities of MPM on a wide-range continuum mechanics problem have already been well assessed, the use of the method in compressible fluid dynamics has received less attention. In this thesis we present a portable, highly parallel, GPU based MPM solver for compressible gas dynamics. The implementation aims to reach a good compromise between portability and efficiency to provide a first assessment of the potential of this approach in solving strongly compressible gas flow problems, and also to take into account solid obstacles. The numerical model considered constitutes a first step towards the development of a monolithic MPM solver for Fluid-Structure Interaction (FSI) problems at all Mach numbers up to the supersonic regime.File | Dimensione | Formato | |
---|---|---|---|
PJB_Doctoral_Dissertation.pdf
accessibile in internet per tutti a partire dal 21/01/2026
Descrizione: Full text
Dimensione
8.48 MB
Formato
Adobe PDF
|
8.48 MB | Adobe PDF | Visualizza/Apri |
I documenti in POLITesi sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.
https://hdl.handle.net/10589/232652