The climate emergency and the substantial impact of road transport on greenhouse gas emissions necessitate an urgent shift to sustainable mobility practices. Despite governmental efforts to promote sustainable transportation, existing policies have fallen short of achieving the desired sustainability goals and have often worsened social inequalities. In response to this challenge, we propose a data-driven framework to promote inclusive and sustainable mobility solutions, taking into account individual diversities to enhance policy effectiveness. Our framework comprises three key components. First, we employ advanced machine learning techniques to create a detailed, data-driven representation of individual intentions towards sustainable mobility options. This helps capture the main socio-economic factors influencing adoption and assess individuals' readiness to embrace innovative mobility solutions. Second, we use these insights to develop fostering policies that are diversity-aware, effective, and inclusive. By integrating concepts of distributive and epistemic fairness into traditional opinion dynamics models and optimal control strategies, we provide policymakers with a powerful tool for designing and comparing different incentive strategies. Finally, we focus on real-time monitoring of driving behavior, emphasizing vehicle usage and driver's attitude. The collected data enable the optimization of maintenance activities and vehicle settings tailored to individual needs. This enhances safety, maximizes sustainability, and improves the overall mobility experience, favoring the widespread adoption of innovative solutions. The proposed framework has been developed and tested on extensive real-world datasets across various application contexts, including shared mobility, electric mobility, and urban micro-mobility. The variety of these contexts demonstrates the framework's versatility and its effectiveness in guiding policymakers to design diversity-aware, effective policies that promote innovative mobility solutions for an inclusive and sustainable society.
L'emergenza climatica e l'impatto significativo del trasporto su strada sulle emissioni di gas serra richiedono un cambiamento urgente verso una mobilità sostenibile. Nonostante gli sforzi governativi per promuovere soluzioni di mobilità sostenibile, le politiche attuali non hanno raggiunto gli obiettivi desiderati e spesso hanno accentuato le disuguaglianze sociali. Per affrontare questa sfida, proponiamo un framework basato sui dati che promuova soluzioni di mobilità sostenibile e inclusiva, considerando le diversità individuali per migliorare l'efficacia delle politiche. Il nostro framework comprende tre componenti principali. In primo luogo, utilizziamo tecniche avanzate di machine learning per creare una rappresentazione data-driven delle attitudini individuali verso le opzioni di mobilità sostenibile. Questo consente di cogliere i principali fattori socio-economici che influenzano l'adozione e di valutare quanto gli individui siano pronti ad accettare soluzioni di mobilità innovative. In secondo luogo, sfruttiamo queste informazioni per sviluppare politiche di incentivo che tengano in considerazione le diverse caratteristiche degli individui, essendo allo stesso tempo efficaci e inclusive. Integrando quindi concetti di equità distributiva ed epistemica nei modelli tradizionali di dinamica delle opinioni e nelle strategie di controllo ottimo, forniamo ai policymakers un efficace strumento per progettare e confrontare diverse strategie di incentivo. Infine, ci concentriamo sul monitoraggio in tempo reale del comportamento di guida, con particolare attenzione all'uso del veicolo e alle condizioni del conducente. I dati raccolti consentono di ottimizzare le attività di manutenzione e le impostazioni del veicolo in base alle necessità individuali. Questo migliora la sicurezza, massimizza la sostenibilità e arricchisce l'esperienza complessiva di mobilità, favorendo la diffusione su larga scala di soluzioni sostenibili innovative. Il framework proposto è stato sviluppato e testato su ampi set di dati reali in vari contesti applicativi, tra cui la mobilità sharing, la mobilità elettrica e la micro-mobilità urbana. La diversità di questi contesti dimostra la versatilità del framework e la sua efficacia nell'aiutare i policymakers a progettare politiche informate ed efficaci, promuovendo soluzioni di mobilità innovative per una società inclusiva e sostenibile.
Diversity-aware design of intermodal smartmobility solutions for an inclusive and sustainable society
Villa, Eugenia
2024/2025
Abstract
The climate emergency and the substantial impact of road transport on greenhouse gas emissions necessitate an urgent shift to sustainable mobility practices. Despite governmental efforts to promote sustainable transportation, existing policies have fallen short of achieving the desired sustainability goals and have often worsened social inequalities. In response to this challenge, we propose a data-driven framework to promote inclusive and sustainable mobility solutions, taking into account individual diversities to enhance policy effectiveness. Our framework comprises three key components. First, we employ advanced machine learning techniques to create a detailed, data-driven representation of individual intentions towards sustainable mobility options. This helps capture the main socio-economic factors influencing adoption and assess individuals' readiness to embrace innovative mobility solutions. Second, we use these insights to develop fostering policies that are diversity-aware, effective, and inclusive. By integrating concepts of distributive and epistemic fairness into traditional opinion dynamics models and optimal control strategies, we provide policymakers with a powerful tool for designing and comparing different incentive strategies. Finally, we focus on real-time monitoring of driving behavior, emphasizing vehicle usage and driver's attitude. The collected data enable the optimization of maintenance activities and vehicle settings tailored to individual needs. This enhances safety, maximizes sustainability, and improves the overall mobility experience, favoring the widespread adoption of innovative solutions. The proposed framework has been developed and tested on extensive real-world datasets across various application contexts, including shared mobility, electric mobility, and urban micro-mobility. The variety of these contexts demonstrates the framework's versatility and its effectiveness in guiding policymakers to design diversity-aware, effective policies that promote innovative mobility solutions for an inclusive and sustainable society.File | Dimensione | Formato | |
---|---|---|---|
DiversityAwareMobility_Eugenia_final_PON.pdf
accessibile in internet solo dagli utenti autorizzati
Descrizione: PDF tesi
Dimensione
25.25 MB
Formato
Adobe PDF
|
25.25 MB | Adobe PDF | Visualizza/Apri |
I documenti in POLITesi sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.
https://hdl.handle.net/10589/232812