This doctoral research focuses on the development of a gamma-ray detector designed for use in a Single Photon Emission Computed Tomography (SPECT) configuration, specifically for quantifying and localizing the dose delivered to patients during Boron Neutron Capture Therapy (BNCT). BNCT is a highly targeted form of hadron therapy that exploits the interaction between boron-10, selectively accumulated in tumor cells via specific binding compounds, and thermal neutrons used to irradiate the patient. This interaction produces two high linear energy transfer (LET) particles that release their energy within the targeted tumor cells. Due to its precise targeting capability, BNCT is particularly effective for treating infiltrative or diffuse tumors and tumors located near critical structures. Its clinical adoption has been limited by several challenges, including the generation of sufficient clinical neutron fluxes, the development of selective and non-toxic boron compounds, and the absence of real-time dose monitoring systems. Recent advancements in compact accelerator-based neutron sources have revitalized interest in BNCT, with several new facilities now operational or under construction worldwide. As a result, there is an urgent need to further develop BNCT-related technologies. The objective of this thesis was to develop a single unit of a BNCT- SPECT system, that aims to detect gamma rays at 478keV emitted by boron neutron capture reactions to enable real-time dose monitoring. The development of this system is particularly challenging due to the unique requirements of BNCT, including the need to detect low concentrations of boron (tens of ppm) over a huge background of mixed radiation produced by the high-intensity neutron flux necessary for treatment. The development focused on an indirect conversion gamma-ray detector based on a LaBr3(Ce+Sr) scintillator crystal, coupled with silicon photomultipliers (SiPMs) and read by custom electronics based on Application-Specific Integrated Circuit (ASIC) and Field-Programmable Gate Array (FPGA). The detector is combined with a pinhole collimator and an Artifical Neural Network (ANN) algorithm for two-dimensional position reconstruction of the gamma events. Over the course of this thesis, three successive versions of the detector were developed and are presented herein. A series of experimental measurements at the TRIGA Mark II research nuclear reactor of Pavia University validated the feasibility of the BNCT- SPECT unit developed. The system successfully detected 1cm lateral displacements of a borated vial during neutron irradiation. These results strongly suggest that the BNCT-SPECT system proposed and developed in this research holds significant promise for clinical applications.
Questa tesi di dottorato si concentra sullo sviluppo di un rivelatore di raggi gamma progettato per l'uso in una configurazione di tomografia a emissione di singolo fotone (SPECT), specificatamente per quantificare e localizzare la dose somministrata ai pazienti durante un trattamento di Boron Neutron Capture Therapy (BNCT). La BNCT è una forma altamente mirata di adroterapia che sfrutta l'interazione tra il boro-10, che si accumula selettivamente nelle cellule tumorali tramite specifici composti di legame, e i neutroni termici utilizzati per irradiare il paziente. Questa interazione genera due particelle ad alto trasferimento lineare di energia (LET) che rilasciano la loro energia all'interno delle cellule tumorali bersaglio. Grazie alle sue capacità di targeting preciso, la BNCT è particolarmente efficace per il trattamento di tumori infiltrativi o diffusi e di tumori situati in prossimità di strutture critiche. Tuttavia, la sua adozione clinica è stata limitata da diverse sfide, tra cui la generazione di flussi neutronici clinici sufficienti, lo sviluppo di composti di boro selettivi e non tossici e l'assenza di sistemi di monitoraggio della dose in tempo reale. I recenti progressi nelle sorgenti di neutroni compatte basate su acceleratori hanno riacceso l'interesse per la BNCT, con diversi nuovi impianti già operativi o in fase di costruzione in tutto il mondo. Di conseguenza, vi è un'urgente necessità di sviluppare ulteriormente le tecnologie correlate alla BNCT. L'obiettivo di questa tesi è stato lo sviluppo di una singola unità di un sistema BNCT-SPECT, progettata per rilevare i raggi gamma a 478 keV emessi dalle reazioni di cattura neutronica del boro, consentendo il monitoraggio in tempo reale della dose. Lo sviluppo di questo sistema è particolarmente complesso a causa dei requisiti unici della BNCT, tra cui la necessità di rilevare basse concentrazioni di boro (dell'ordine di decine di ppm) in un ambiente caratterizzato da un elevato fondo di radiazione mista, prodotto dal flusso neutronico ad alta intensità necessario per il trattamento. Il lavoro si è concentrato su un rivelatore di raggi gamma a conversione indiretta basato su un cristallo scintillatore LaBr3(Ce+Sr), accoppiato a fotomoltiplicatori al silicio (SiPM) e letto da un'elettronica personalizzata basata su circuiti integrati specifici per applicazioni (ASIC) e Field-Programmable Gate Array (FPGA). Il rivelatore è combinato con un collimatore a foro stenopeico e un algoritmo basato su reti neurali artificiali (ANN) per la ricostruzione bidimensionale della posizione degli eventi gamma. Nel corso di questa tesi sono state sviluppate e presentate tre versioni successive del rivelatore. Una serie di misure sperimentali presso il reattore nucleare di ricerca TRIGA Mark II dell'Università di Pavia ha validato la fattibilità dell'unità BNCT-SPECT sviluppata. Il sistema è stato in grado di rilevare con successo spostamenti laterali di 1 cm di una provetta contenente boro durante l'irradiazione neutronica. Questi risultati suggeriscono fortemente che il sistema BNCT-SPECT proposto e sviluppato in questa ricerca possieda un notevole potenziale per applicazioni cliniche.
Development of a gamma-ray detection unit for a SPECT system for real-time dose monitoring in BNCT
Caracciolo, Anita
2024/2025
Abstract
This doctoral research focuses on the development of a gamma-ray detector designed for use in a Single Photon Emission Computed Tomography (SPECT) configuration, specifically for quantifying and localizing the dose delivered to patients during Boron Neutron Capture Therapy (BNCT). BNCT is a highly targeted form of hadron therapy that exploits the interaction between boron-10, selectively accumulated in tumor cells via specific binding compounds, and thermal neutrons used to irradiate the patient. This interaction produces two high linear energy transfer (LET) particles that release their energy within the targeted tumor cells. Due to its precise targeting capability, BNCT is particularly effective for treating infiltrative or diffuse tumors and tumors located near critical structures. Its clinical adoption has been limited by several challenges, including the generation of sufficient clinical neutron fluxes, the development of selective and non-toxic boron compounds, and the absence of real-time dose monitoring systems. Recent advancements in compact accelerator-based neutron sources have revitalized interest in BNCT, with several new facilities now operational or under construction worldwide. As a result, there is an urgent need to further develop BNCT-related technologies. The objective of this thesis was to develop a single unit of a BNCT- SPECT system, that aims to detect gamma rays at 478keV emitted by boron neutron capture reactions to enable real-time dose monitoring. The development of this system is particularly challenging due to the unique requirements of BNCT, including the need to detect low concentrations of boron (tens of ppm) over a huge background of mixed radiation produced by the high-intensity neutron flux necessary for treatment. The development focused on an indirect conversion gamma-ray detector based on a LaBr3(Ce+Sr) scintillator crystal, coupled with silicon photomultipliers (SiPMs) and read by custom electronics based on Application-Specific Integrated Circuit (ASIC) and Field-Programmable Gate Array (FPGA). The detector is combined with a pinhole collimator and an Artifical Neural Network (ANN) algorithm for two-dimensional position reconstruction of the gamma events. Over the course of this thesis, three successive versions of the detector were developed and are presented herein. A series of experimental measurements at the TRIGA Mark II research nuclear reactor of Pavia University validated the feasibility of the BNCT- SPECT unit developed. The system successfully detected 1cm lateral displacements of a borated vial during neutron irradiation. These results strongly suggest that the BNCT-SPECT system proposed and developed in this research holds significant promise for clinical applications.File | Dimensione | Formato | |
---|---|---|---|
2025_02_Caracciolo.pdf
non accessibile
Descrizione: Testo tesi
Dimensione
9.89 MB
Formato
Adobe PDF
|
9.89 MB | Adobe PDF | Visualizza/Apri |
I documenti in POLITesi sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.
https://hdl.handle.net/10589/233035