Mitral regurgitation (MR) is a prevalent condition that often necessitates intervention. While traditional open-chest surgery has been the primary treatment for MR, minimally invasive percutaneous procedures such as transcatheter edge-to-edge repair (TEER) have emerged as viable alternatives, particularly for patients ineligible for surgery due to age or comorbidities. Despite their advantages, percutaneous procedures require precise imaging guidance, extensive training, and significant operator expertise, making them highly demanding interventions. Echocardiography, particularly transesophageal echocardiography (TEE) in both 2D and 3D modes, plays a crucial role in these interventions. However, the inherent challenges of echocardiographic imaging, including low contrast, operator dependency, and susceptibility to artifacts, pose significant barriers to effective procedural guidance.\\ This thesis explores the potential of artificial intelligence (AI) and deep learning (DL) to enhance echocardiographic imaging for percutaneous mitral valve (MV) treatment. The primary focus of this work is the development of DL-based methods to improve the segmentation, interpretation, and analysis of echocardiographic images, enhancing procedural guidance and decision-making in interventional cardiology. Key contributions of this thesis include: (1) a novel convolutional neural network (CNN)-based pipeline for fully automated, multi-class segmentation of the MV annulus and leaflets from 3D TEE, achieving high segmentation accuracy and repeatability, and enabling automatic anatomical feature extraction and quantification; (2) a semi-supervised learning framework utilizing a Teacher-Student approach for dynamic 4D MV segmentation, significantly reducing the need for manual annotations while improving segmentation accuracy across the cardiac cycle; (3) a self-supervised domain adaptation strategy to enable vendor-agnostic MV segmentation, addressing cross-domain variability in echocardiographic imaging; and (4) an automated pipeline for MitraClip detection and configuration analysis, improving real-time visualization and procedural efficiency. \\ The proposed methods have demonstrated outstanding performance in MV segmentation, dynamic tracking, and device detection, providing clinically significant enhancements in TEER accuracy, efficiency, and safety. This research represents a significant step toward the automation of percutaneous structural heart interventions, paving the way for AI-assisted robotic platforms that rely on echocardiography for procedural navigation. By reducing reliance on fluoroscopy, enhancing operator efficiency, and improving procedural outcomes, the advancements presented in this thesis contribute to the broader goal of expanding access to life-saving percutaneous treatments for MV diseases.
Il rigurgito mitralico (RM) è una condizione patologica diffusa che spesso richiede un intervento chirugico. Sebbene la chirurgia tradizionale a torace aperto sia stata il trattamento principale per la RM, le procedure percutanee minimamente invasive, come la riparazione transcatetere edge-to-edge (TEER), sono emerse come valide alternative, in particolare per i pazienti non idonei alla chirurgia a causa dell'età o di comorbidità. Nonostante i loro vantaggi, le procedure percutanee sono altamente complesse, richiedendo una guida per immagini precisa, un ampio addestramento e una notevole esperienza dell'operatore. L'ecocardiografia, in particolare l'ecocardiografia transesofagea (TEE) in modalità 2D e 3D, svolge un ruolo cruciale in questi interventi. Tuttavia, le sfide intrinseche dell'imaging ecocardiografico, tra cui lo scarso contrasto, la dipendenza dall'operatore e la suscettibilità agli artefatti, rappresentano ostacoli significativi per una guida procedurale efficace.\\ Questa tesi esplora il potenziale dell'intelligenza artificiale (IA) e del deep learning (DL) per migliorare l'imaging ecocardiografico nel trattamento percutaneo della valvola mitrale (VM). L'obiettivo principale di questo lavoro è lo sviluppo di metodi basati su DL per migliorare la segmentazione, l'interpretazione e l'analisi delle immagini ecocardiografiche, facilitando la guida procedurale e il processo decisionale nella cardiologia interventistica. I principali contributi di questa tesi includono: (1) un nuovo sistema basato su una rete neurale convoluzionale (CNN) per la segmentazione completamente automatizzata e multi-classe dell'anulus mitralico e dei lembi valvolari a partire da immagini TEE 3D, ottenendo un'elevata accuratezza e ripetibilità della segmentazione e consentendo l'estrazione e la quantificazione automatica delle caratteristiche anatomiche; (2) un framework di apprendimento semi-supervisionato che utilizza un approccio Teacher-Student per la segmentazione dinamica 4D della VM, riducendo significativamente la necessità di annotazioni manuali e migliorando l'accuratezza della segmentazione nel ciclo cardiaco; (3) una strategia di adattamento auto-supervisionato per consentire una segmentazione della VM indipendente dal fornitore, affrontando la variabilità tra diverse piattaforme ecocardiografiche; e (4) un sistema automatizzato per il rilevamento e l'analisi della configurazione del MitraClip, migliorando la visualizzazione in tempo reale e l'efficienza procedurale.\\ I metodi proposti hanno dimostrato prestazioni eccellenti nella segmentazione della VM, nel tracciamento dinamico e nel rilevamento dei dispositivi, fornendo miglioramenti clinicamente significativi in termini di accuratezza, efficienza e sicurezza della TEER. Questa ricerca rappresenta un passo importante verso l'automazione degli interventi strutturali cardiaci percutanei, aprendo la strada a piattaforme robotiche assistite dall'IA che si basano sull'ecocardiografia per la navigazione procedurale. Riducendo la dipendenza dalla fluoroscopia, migliorando l'efficienza degli operatori e ottimizzando gli esiti procedurali, i progressi presentati in questa tesi contribuiscono all'obiettivo più ampio di ampliare l'accesso ai trattamenti percutanei salvavita per le malattie della valvola mitrale.
Deep learning-driven segmentation of echocardiographic images for intraprocedural support in percutaneous mitral valve repair
MUNAFÒ, RICCARDO
2024/2025
Abstract
Mitral regurgitation (MR) is a prevalent condition that often necessitates intervention. While traditional open-chest surgery has been the primary treatment for MR, minimally invasive percutaneous procedures such as transcatheter edge-to-edge repair (TEER) have emerged as viable alternatives, particularly for patients ineligible for surgery due to age or comorbidities. Despite their advantages, percutaneous procedures require precise imaging guidance, extensive training, and significant operator expertise, making them highly demanding interventions. Echocardiography, particularly transesophageal echocardiography (TEE) in both 2D and 3D modes, plays a crucial role in these interventions. However, the inherent challenges of echocardiographic imaging, including low contrast, operator dependency, and susceptibility to artifacts, pose significant barriers to effective procedural guidance.\\ This thesis explores the potential of artificial intelligence (AI) and deep learning (DL) to enhance echocardiographic imaging for percutaneous mitral valve (MV) treatment. The primary focus of this work is the development of DL-based methods to improve the segmentation, interpretation, and analysis of echocardiographic images, enhancing procedural guidance and decision-making in interventional cardiology. Key contributions of this thesis include: (1) a novel convolutional neural network (CNN)-based pipeline for fully automated, multi-class segmentation of the MV annulus and leaflets from 3D TEE, achieving high segmentation accuracy and repeatability, and enabling automatic anatomical feature extraction and quantification; (2) a semi-supervised learning framework utilizing a Teacher-Student approach for dynamic 4D MV segmentation, significantly reducing the need for manual annotations while improving segmentation accuracy across the cardiac cycle; (3) a self-supervised domain adaptation strategy to enable vendor-agnostic MV segmentation, addressing cross-domain variability in echocardiographic imaging; and (4) an automated pipeline for MitraClip detection and configuration analysis, improving real-time visualization and procedural efficiency. \\ The proposed methods have demonstrated outstanding performance in MV segmentation, dynamic tracking, and device detection, providing clinically significant enhancements in TEER accuracy, efficiency, and safety. This research represents a significant step toward the automation of percutaneous structural heart interventions, paving the way for AI-assisted robotic platforms that rely on echocardiography for procedural navigation. By reducing reliance on fluoroscopy, enhancing operator efficiency, and improving procedural outcomes, the advancements presented in this thesis contribute to the broader goal of expanding access to life-saving percutaneous treatments for MV diseases.File | Dimensione | Formato | |
---|---|---|---|
phd_thesis_riccardo_munafo_revised.pdf
accessibile in internet per tutti a partire dal 21/02/2026
Dimensione
29.49 MB
Formato
Adobe PDF
|
29.49 MB | Adobe PDF | Visualizza/Apri |
I documenti in POLITesi sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.
https://hdl.handle.net/10589/233932