Dynamic covalent hydrogels are emerging as promising materials for tissue engineering, regenerative medicine, and injectable biomaterials due to their unique mechanical properties and versatility. These hydrogels can undergo reversible covalent bond formation, enabling precise tuning of their physical properties in response to external stimuli. This dynamic behavior makes them ideal for applications in drug delivery systems, cell scaffolds, and responsive wound healing materials. Furthermore, their biocompatibility is crucial for supporting cell growth and function without causing toxicity or immune rejection. Despite their potential, challenges remain in understanding how these materials respond to mechanical forces such as pressure, shear, and temperature. Hydrogels transition between liquid-like and solid-like states depending on these external factors, and their rheological behavior, especially shear-thinning properties and gelation mechanisms, must be optimized for stability and functionality under physiological conditions. This study investigates the mechanical and biological properties of dynamic covalent hydrogels, focusing on their application in tissue engineering. Two types of hydrogels, APBA-GL and PBA-GL, were tested under varying pressure conditions. Results showed that lower concentrations (3.0–3.5 wt%) remained fluid-like, while higher concentrations (4.5 wt% and above) exhibited solid-like behavior at lower pressures. APBA-GL gels transitioned to a solid-like state at a lower critical pressure compared to PBA-GL, suggesting a more robust network in APBA-GL gels. Microfluidic analysis revealed shear-thinning behavior at lower pressures, confirming that these hydrogels behave as viscoelastic materials. To better understand these rheological properties, a MATLAB code was developed to track particles during the microfluidic analysis and calculate their velocity, which helped establish the specific hydrogel behavior under different conditions. Cytocompatibility tests showed that fibroblast cells embedded in 3.5 wt% hydrogels had high viability (> 75%), and gelatin-coated hydrogels enhanced cell attachment and spreading. From a biological standpoint, the hydrogels were surface-functionalized with various coatings, which demonstrated cytocompatibility with 3T3 cells, promoting favorable cell interactions and tissue integration. These findings highlight the versatility of dynamic covalent hydrogels, which can be tailored for applications in injectable biomaterials, cell scaffolds, and drug delivery systems. Furthermore, by enhancing surface modifications, this opens the door to their use for improved tissue integration and the development of advanced biomaterials. As a future outlook, exploring the encapsulation of bioactive molecules or cells within these hydrogels could further enhance their therapeutic potential and broaden their applications in regenerative medicine and other biomedical fields.
I gel di idrogel covalenti dinamici stanno emergendo come materiali promettenti per l'ingegneria tissutale, la medicina rigenerativa e i biomateriali iniettabili grazie alle loro uniche proprietà meccaniche e versatilità. Questi idrogel possono subire la formazione di legami covalenti reversibili, consentendo una regolazione precisa delle loro proprietà fisiche in risposta a stimoli esterni. Il loro comportamento dinamico li rende ideali per applicazioni nei sistemi di rilascio di farmaci, nei supporti cellulari e nei materiali reattivi per la guarigione delle ferite. Inoltre, la loro citocopatibilità supporta la crescita e la funzione cellulare senza causare tossicità o rigetto immunitario. Nonostante il loro potenziale, rimangono delle sfide nella comprensione di come questi materiali rispondano alle forze meccaniche come pressione, taglio e temperatura. Gli idrogel alternano fasi tra allo stato liquido e allo stato solido a seconda di questi fattori esterni, e il loro comportamento reologico, in particolare le proprietà di shear-thinning e i meccanismi di gelificazione, devono essere ottimizzati per garantire stabilità e funzionalità in condizioni fisiologiche. Questo studio indaga le proprietà meccaniche e biologiche degli idrogel covalenti dinamici, concentrandosi sulla loro applicazione nell'ingegneria tissutale. Sono stati testati due tipi di idrogel, APBA-GL e PBA-GL, sotto diverse condizioni di pressione. I risultati hanno mostrato che concentrazioni più basse (3,0–3,5 wt%) rimanevano in uno stato simile al liquido, mentre concentrazioni più alte (4,5 wt% e superiori) mostravano un comportamento simile al solido a pressioni più basse. Gli idrogel APBA-GL sono passati a uno stato simile al solido a una pressione critica inferiore rispetto ai PBA-GL, suggerendo una rete più robusta negli idrogel APBA-GL. L'analisi microfluida ha rivelato un comportamento di shear-thinning a pressioni più basse, confermando che questi idrogel si comportano come materiali viscoelastici. Per comprendere meglio queste proprietà reologiche, è stato sviluppato un codice MATLAB in grado di tracciare le particelle durante l'analisi microfluida e calcolarne la velocità, il che ha aiutato a stabilire il comportamento specifico degli idrogel in diverse condizioni. I test di citocompatibilità hanno mostrato che le cellule fibroblastiche in presenza di gel con concentrazione del 3,5 wt% avevano una alta vitalità (> 75%), e la gelatina 1% ha migliorato l'attacco e la diffusione cellulare. Dal punto di vista biologico, gli idrogel sono stati funzionalizzati in superficie con vari rivestimenti, che hanno dimostrato citocompatibilità con le cellule 3T3, favorendo interazioni cellulari e integrazione tissutale. Questi risultati evidenziano la versatilità degli idrogel covalenti dinamici, che possono essere adattati per applicazioni in biomateriali iniettabili, supporti cellulari e sistemi di rilascio di farmaci. Inoltre, migliorando le modifiche superficiali, si apre la possibilità di utilizzarli per una migliore integrazione tissutale e lo sviluppo di biomateriali avanzati. Come prospettiva futura, esplorare l'incapsulamento di molecole bioattive o cellule all'interno di questi idrogel potrebbe migliorare ulteriormente il loro potenziale terapeutico e ampliare le loro applicazioni in medicina rigenerativa e in altri campi biomedici.
Flow of dynamic hydrogels through a microfluidic chip and their biological functionalization
HAMMORI, MIRIAM
2023/2024
Abstract
Dynamic covalent hydrogels are emerging as promising materials for tissue engineering, regenerative medicine, and injectable biomaterials due to their unique mechanical properties and versatility. These hydrogels can undergo reversible covalent bond formation, enabling precise tuning of their physical properties in response to external stimuli. This dynamic behavior makes them ideal for applications in drug delivery systems, cell scaffolds, and responsive wound healing materials. Furthermore, their biocompatibility is crucial for supporting cell growth and function without causing toxicity or immune rejection. Despite their potential, challenges remain in understanding how these materials respond to mechanical forces such as pressure, shear, and temperature. Hydrogels transition between liquid-like and solid-like states depending on these external factors, and their rheological behavior, especially shear-thinning properties and gelation mechanisms, must be optimized for stability and functionality under physiological conditions. This study investigates the mechanical and biological properties of dynamic covalent hydrogels, focusing on their application in tissue engineering. Two types of hydrogels, APBA-GL and PBA-GL, were tested under varying pressure conditions. Results showed that lower concentrations (3.0–3.5 wt%) remained fluid-like, while higher concentrations (4.5 wt% and above) exhibited solid-like behavior at lower pressures. APBA-GL gels transitioned to a solid-like state at a lower critical pressure compared to PBA-GL, suggesting a more robust network in APBA-GL gels. Microfluidic analysis revealed shear-thinning behavior at lower pressures, confirming that these hydrogels behave as viscoelastic materials. To better understand these rheological properties, a MATLAB code was developed to track particles during the microfluidic analysis and calculate their velocity, which helped establish the specific hydrogel behavior under different conditions. Cytocompatibility tests showed that fibroblast cells embedded in 3.5 wt% hydrogels had high viability (> 75%), and gelatin-coated hydrogels enhanced cell attachment and spreading. From a biological standpoint, the hydrogels were surface-functionalized with various coatings, which demonstrated cytocompatibility with 3T3 cells, promoting favorable cell interactions and tissue integration. These findings highlight the versatility of dynamic covalent hydrogels, which can be tailored for applications in injectable biomaterials, cell scaffolds, and drug delivery systems. Furthermore, by enhancing surface modifications, this opens the door to their use for improved tissue integration and the development of advanced biomaterials. As a future outlook, exploring the encapsulation of bioactive molecules or cells within these hydrogels could further enhance their therapeutic potential and broaden their applications in regenerative medicine and other biomedical fields.File | Dimensione | Formato | |
---|---|---|---|
2024_04_Hammori_ExecutiveSummary_02.pdf
accessibile in internet per tutti
Descrizione: testo tesi
Dimensione
1.08 MB
Formato
Adobe PDF
|
1.08 MB | Adobe PDF | Visualizza/Apri |
2024_04_Hammori_Tesi_01.pdf
accessibile in internet per tutti
Descrizione: testo executive summary
Dimensione
4.25 MB
Formato
Adobe PDF
|
4.25 MB | Adobe PDF | Visualizza/Apri |
I documenti in POLITesi sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.
https://hdl.handle.net/10589/234014