This thesis presents the development of an ensemble-based forecasting model for local meteorological predictions, integrating data from multiple sources to enhance forecast ac-curacy. The system automates data collection from two commercial weather forecasting websites, ilmeteo.it and 3bmeteo.com, alongside real-time data from a local weather sta-tion. Key variables such as temperature, humidity and atmospheric pressure are gathered and analyzed, forming the foundation of the forecasting models. To accurately capture local meteorological patterns, a SARIMA model was developed and trained on historical data from the local station, addressing both seasonal and trend components specific to the region. In parallel, an ensemble approach was implemented, combining forecasts from the SARIMA model with those from ilmeteo.it and 3bmeteo.com based on a weighted average, where the weights are inversely proportional to each source’s RMSE. Additionally, a linear regression adjustment was applied to further refine the ensemble predictions and reduce residual errors. The results demonstrate that the ensemble model outperforms individual forecasts, achiev-ing lower RMSE values across all variables, particularly for temperature and pressure. This enhanced accuracy highlights the potential of combining different data sources and models to address the inherent variability in meteorological data, ultimately delivering more reliable forecasts for local applications. In addressing limitations, this study outlines potential improvements, such as the inclu-sion of additional standard meteorological variables commonly available on weather sites, the integration of machine learning techniques for dynamic model weighting and real-time data assimilation to continuously refine forecasts. This work represents a step forward in leveraging ensemble methodologies for localized weather prediction, with potential appli-cations across sectors that rely on precise and timely meteorological insights.
Questa tesi presenta lo sviluppo di un modello di previsione meteorologica basato su un approccio ensemble per migliorare l’accuratezza delle previsioni locali. Il sistema autom-atizza la raccolta di dati meteorologici da due siti di previsioni commerciali, ilmeteo.it e 3bmeteo.com, integrandoli con i dati in tempo reale di una stazione meteo locale. Le variabili chiave, come temperatura, umidità e pressione atmosferica, vengono raccolte e analizzate, costituendo la base per i modelli di previsione. Per catturare con precisione i modelli meteorologici locali, è stato sviluppato e addestrato un modello SARIMA sui dati storici della stazione locale, in grado di gestire le compo-nenti stagionali e di trend specifiche della regione. Parallelamente, è stato implemen-tato un approccio ensemble che combina le previsioni del modello SARIMA con quelle di ilmeteo.it e 3bmeteo.com tramite una media pesata, in cui i pesi sono inversamente proporzionali all’RMSE di ciascuna fonte. Inoltre, è stato applicato un aggiustamento tramite regressione lineare per affinare ulteriormente le previsioni dell’ensemble e ridurre gli errori residui. I risultati dimostrano che il modello ensemble supera le singole previsioni, ottenendo valori di RMSE inferiori su tutte le variabili, in particolare per la temperatura e la pressione. Questa maggiore accuratezza evidenzia il potenziale della combinazione di diverse fonti di dati e modelli per affrontare la variabilità intrinseca dei dati meteorologici, fornendo previsioni più affidabili per applicazioni locali. Nel considerare le limitazioni, questo studio propone miglioramenti futuri, come l’inclusione di ulteriori variabili meteorologiche standard comunemente disponibili sui siti di previ-sioni, l’integrazione di tecniche di machine learning per la ponderazione dinamica dei modelli e l’assimilazione dei dati in tempo reale per affinare continuamente le previsioni. Questo lavoro rappresenta un passo avanti nell’utilizzo di metodologie ensemble per la previsione meteorologica locale, con potenziali applicazioni in settori che richiedono dati meteorologici precisi e tempestivi.
Improving local weather predictions through an ensemble approach
TIRABOSCHI, LUCA
2023/2024
Abstract
This thesis presents the development of an ensemble-based forecasting model for local meteorological predictions, integrating data from multiple sources to enhance forecast ac-curacy. The system automates data collection from two commercial weather forecasting websites, ilmeteo.it and 3bmeteo.com, alongside real-time data from a local weather sta-tion. Key variables such as temperature, humidity and atmospheric pressure are gathered and analyzed, forming the foundation of the forecasting models. To accurately capture local meteorological patterns, a SARIMA model was developed and trained on historical data from the local station, addressing both seasonal and trend components specific to the region. In parallel, an ensemble approach was implemented, combining forecasts from the SARIMA model with those from ilmeteo.it and 3bmeteo.com based on a weighted average, where the weights are inversely proportional to each source’s RMSE. Additionally, a linear regression adjustment was applied to further refine the ensemble predictions and reduce residual errors. The results demonstrate that the ensemble model outperforms individual forecasts, achiev-ing lower RMSE values across all variables, particularly for temperature and pressure. This enhanced accuracy highlights the potential of combining different data sources and models to address the inherent variability in meteorological data, ultimately delivering more reliable forecasts for local applications. In addressing limitations, this study outlines potential improvements, such as the inclu-sion of additional standard meteorological variables commonly available on weather sites, the integration of machine learning techniques for dynamic model weighting and real-time data assimilation to continuously refine forecasts. This work represents a step forward in leveraging ensemble methodologies for localized weather prediction, with potential appli-cations across sectors that rely on precise and timely meteorological insights.File | Dimensione | Formato | |
---|---|---|---|
Improving_Local_Weather_Predictions_through_an_Ensemble_Approach.pdf
accessibile in internet solo dagli utenti autorizzati
Dimensione
2.77 MB
Formato
Adobe PDF
|
2.77 MB | Adobe PDF | Visualizza/Apri |
I documenti in POLITesi sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.
https://hdl.handle.net/10589/234073