The rapid growth of trading volumes in zero days-to-expiry (0DTE) options has established these instruments as a key area of interest in financial markets, enabling speculation and hedging over ultra-short time horizons. This work develops a closed-form pricing framework for 0DTE options, leveraging local-in-time Edgeworth and Gram-Charlier expansions of the log-return characteristic function. The method introduces local skewness and kurtosis adjustments through leverage and volatility-of-volatility, effectively capturing the slope and convexity of the implied volatility curve. Accurate pricing is achieved across a broad log-moneyness range, with the most notable improvements observed at and near at-the-money (ATM). A comparative analysis highlights the superior performance of tempered stable jumps, particularly of the Normal Inverse Gaussian (NIG) specification, relative to Gaussian jump processes. Additional refinements, such as filtering techniques applied to the data tails, further enhance pricing accuracy, especially around the ATM region. While the primary focus is on S&P 500 (SPX) options, the models are also validated against 0DTE options on the DAX and Euro Stoxx 50 indexes. Despite their narrower log-moneyness ranges, implied volatility curves in these markets are accurately reconstructed, confirming the robustness of the approach and the advantages of incorporating richer jump dynamics.
La rapida crescita dei volumi di scambio delle opzioni zero days-to-expiry (0DTE) ha reso questi strumenti un'area di grande interesse nei mercati finanziari, consentendo speculazioni e coperture su orizzonti temporali estremamente brevi. Questo lavoro sviluppa un framework di pricing in forma chiusa per le opzioni 0DTE, sfruttando espansioni locali nel tempo di tipo Edgeworth e Gram-Charlier applicate alla funzione caratteristica dei rendimenti logaritmici. Il metodo introduce aggiustamenti locali ad asimmetria e curtosi attraverso leva e volatilità della volatilità, catturando efficacemente la pendenza e la convessità della curva di volatilità implicita. Il pricing risulta accurato su un ampio intervallo di log-moneyness, con i miglioramenti più significativi osservati at-the-money (ATM) e nelle sue vicinanze. Un’analisi comparativa evidenzia le prestazioni superiori dei tempered stable jumps, in particolare della specifica Normal Inverse Gaussian (NIG), rispetto ai processi di salto gaussiani. Ulteriori perfezionamenti, come tecniche di filtraggio delle code dei dati, contribuiscono a migliorare l’accuratezza del pricing, soprattutto nella regione ATM. Sebbene l’attenzione principale sia rivolta alle opzioni sull’S&P 500 (SPX), i modelli sono stati validati anche su opzioni 0DTE relative agli indici DAX ed Euro Stoxx 50. Nonostante intervalli di log-moneyness più ridotti, le curve di volatilità implicita in questi mercati sono ricostruite con precisione, confermando la robustezza dell’approccio e i vantaggi dell’inclusione di dinamiche di salto più ricche.
Pricing 0DTE options exploiting Edgeworth and Gram-Charlier expansions: a computational framework for closed-form pricing
Molta, Matteo
2024/2025
Abstract
The rapid growth of trading volumes in zero days-to-expiry (0DTE) options has established these instruments as a key area of interest in financial markets, enabling speculation and hedging over ultra-short time horizons. This work develops a closed-form pricing framework for 0DTE options, leveraging local-in-time Edgeworth and Gram-Charlier expansions of the log-return characteristic function. The method introduces local skewness and kurtosis adjustments through leverage and volatility-of-volatility, effectively capturing the slope and convexity of the implied volatility curve. Accurate pricing is achieved across a broad log-moneyness range, with the most notable improvements observed at and near at-the-money (ATM). A comparative analysis highlights the superior performance of tempered stable jumps, particularly of the Normal Inverse Gaussian (NIG) specification, relative to Gaussian jump processes. Additional refinements, such as filtering techniques applied to the data tails, further enhance pricing accuracy, especially around the ATM region. While the primary focus is on S&P 500 (SPX) options, the models are also validated against 0DTE options on the DAX and Euro Stoxx 50 indexes. Despite their narrower log-moneyness ranges, implied volatility curves in these markets are accurately reconstructed, confirming the robustness of the approach and the advantages of incorporating richer jump dynamics.File | Dimensione | Formato | |
---|---|---|---|
2025_04_Molta_Executive_Summary.pdf
accessibile in internet per tutti
Descrizione: Executive Summary
Dimensione
1.13 MB
Formato
Adobe PDF
|
1.13 MB | Adobe PDF | Visualizza/Apri |
2025_04_Molta_Tesi.pdf
accessibile in internet per tutti
Descrizione: Testo della Tesi
Dimensione
6.36 MB
Formato
Adobe PDF
|
6.36 MB | Adobe PDF | Visualizza/Apri |
I documenti in POLITesi sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.
https://hdl.handle.net/10589/234132