Starting from the well-know Bates model, largely used in finance to price options within a stochastic volatility framework, the objective of the the- sis is to further analyze and improve the ability of the model to simulate market movements and its pricing accuracy. Specifically the work focuses on a general- ization of the Bates Model, which is going to substitute the usual "jump" term, a compound Poisson process, with a renewal process: the exponentially distributed interarrival times between jumps will be replaced by more complex distributions. Weibull and Mittag-Leffler random variables will be the candidate distributions for the interarrival times of jumps studied in this paper. The trade-off between Com- plexity and Computational Costs versus Accuracy of the calibration process will be a crucial factor to determine whether or not the extension of the Bates model is actually an improvement, not only from a theoretical perspective, but also when realistically applied to the markets. The calibration process will be investigated, not only using the well-know Carr-Madan algorithm, but also through the COS expansion. In particular, the proposed model exploiting Mittag-Leffler distributed inter-arrival times, especially within the COS framework, results to be extremely efficient in terms of multi-maturity calibration, representing a great improvement of the classical Bates model.
Partendo dal noto modello di Bates, ampiamente utilizzato in ambito finanziario per la valutazione delle opzioni all’interno di un framework di volatilità stocastica, l’obiettivo di questa tesi è approfondire e migliorare la capacità del modello di simulare i movimenti di mercato e la sua accuratezza nella determinazione dei prezzi. In particolare, il lavoro si concentra su una generalizzazione del modello di Bates, in cui il consueto "jump term", modellato seguendo un compound Poisson process, viene sostituito da un renewal process: la disitribuzione esponenziale dei tempi di attesa tra "jumps", viene sostituita da distribuzioni più complesse. In questo studio, le distribuzioni Weibull e Mittag-Leffler saranno le candidate per modellare le attese tra salti. Il trade-off tra complessità e costi computazionali rispetto all’accuratezza del processo di calibrazione sarà un fattore cruciale per determinare se l’estensione del modello di Bates rappresenti un effettivo miglioramento, non solo da un punto di vista teorico, ma anche nella sua applicazione ai mercati reali. Il processo di calibrazione viene analizzato non solo attraverso il noto algoritmo di Carr-Madan, ma anche mediante l’espansione COS. In particolare, seguedo questa seconda tecnica di calibrazione, il modello proposto con tempi di attesa tra "jumps" distribuiti secondo una distribuzione Mittag-Leffler, si dimostra estremamente efficiente nel contesto della calibrazione multi-maturity, rappresentando un significativo miglioramento rispetto al modello di Bates classico.
Generalized Bates model with renewal processes: calibration enhancement and efficient pricing via COS expansion
PURICELLI, FILIPPO
2023/2024
Abstract
Starting from the well-know Bates model, largely used in finance to price options within a stochastic volatility framework, the objective of the the- sis is to further analyze and improve the ability of the model to simulate market movements and its pricing accuracy. Specifically the work focuses on a general- ization of the Bates Model, which is going to substitute the usual "jump" term, a compound Poisson process, with a renewal process: the exponentially distributed interarrival times between jumps will be replaced by more complex distributions. Weibull and Mittag-Leffler random variables will be the candidate distributions for the interarrival times of jumps studied in this paper. The trade-off between Com- plexity and Computational Costs versus Accuracy of the calibration process will be a crucial factor to determine whether or not the extension of the Bates model is actually an improvement, not only from a theoretical perspective, but also when realistically applied to the markets. The calibration process will be investigated, not only using the well-know Carr-Madan algorithm, but also through the COS expansion. In particular, the proposed model exploiting Mittag-Leffler distributed inter-arrival times, especially within the COS framework, results to be extremely efficient in terms of multi-maturity calibration, representing a great improvement of the classical Bates model.File | Dimensione | Formato | |
---|---|---|---|
2025_04_Puricelli_Tesi.pdf
solo utenti autorizzati a partire dal 26/02/2026
Descrizione: Tesi
Dimensione
3.52 MB
Formato
Adobe PDF
|
3.52 MB | Adobe PDF | Visualizza/Apri |
2025_04_Puricelli_Executive_Summary.pdf
solo utenti autorizzati a partire dal 26/02/2026
Descrizione: Executive Summary
Dimensione
1.49 MB
Formato
Adobe PDF
|
1.49 MB | Adobe PDF | Visualizza/Apri |
I documenti in POLITesi sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.
https://hdl.handle.net/10589/234142