As the global push for decarbonization accelerates, the integration of Renewable Energy Sources (RES) has grown significantly, posing challenges to power system stability due to the decline of synchronous inertia. The increasing presence of Inverter-Based Resources (IBRs) has further impacted grid dynamics, as conventional Grid-Following (GFL) inverters lack synchronous machine characteristics, such as frequency response. To overcome these limitations, Grid-Forming (GFM) inverters have emerged as a viable solution, providing improved voltage and frequency control, particularly in low-inertia conditions. Battery Energy Storage Systems (BESS) play a crucial role in this transition, offering rapid response capabilities and enhanced grid stability. However, real-world BESS plants face performance challenges due to communication latencies and inverter control complexities. This study presents a BESS plant model, designed to analyze the effects of communication delays and inertial support on plant control. Specifically, the Power Plant Controller (PPC), responsible for centralized plant management, has been tested in two configurations (Feedforward with delay estimation and Smith Predictor) to assess its impact on stability when regulating Grid-Following inverters. Additionally, the influence of Virtual Synchronous Machine (VSM) inertial support on plant response has been evaluated, introducing in the model a new input representing the provision of inertial power in response to a Rate of Change of Frequency (RoCoF). In Grid-Following scenario, it has been demonstrated that, since the feedforward scheme is not able to determine the stability of the closed loop system model of the plant, Smith Predictor could be more suitable for controlling processes with uncertainties causing instability. When controlling Grid-Forming inverter, both controllers’ configurations have demonstrated to wrongly compensate for the inertial support of the VSM, therefore a solution to hide the inertial power has been provided. Through stability studies and system response analysis in both Grid-Following and Grid-Forming inverter cases, this research aims to provide a tool to enhance the effectiveness of centralized control by the PPC within BESS plants.
In accordo con la spinta globale verso la decarbonizzazione, la penetrazione di Fonti di Energia Rinnovabile (FER) è cresciuta significativamente, ponendo sfide alla stabilità del sistema elettrico a causa della riduzione dell’inerzia fornita dalle centrali tradizionali. La crescente diffusione delle Risorse Basate su Inverter (IBR) ha ulteriormente impattato la stabilità della rete, poiché gli inverter convenzionali Grid-Following (GFL) non possiedono le caratteristiche delle macchine sincrone, come la capacità di fornire supporto inerziale. Gli inverter Grid-Forming (GFM) sono emersi come una soluzione efficace, in grado di fornire un migliore controllo della tensione e della frequenza, soprattutto in reti con carenza di capacità inerziale. I Sistemi di Accumulo a Batterie (BESS) svolgono un ruolo cruciale in questa transizione, offrendo una risposta rapida a condizioni di carico variabile e migliorando la stabilità della rete. Tuttavia, l’efficacia gli impianti BESS viene ostacolata dalle latenze di comunicazione e dalla corretta gestione del controllo degli inverter. Questa tesi propone un modello di impianto BESS, progettato per analizzare gli effetti dei ritardi di comunicazione e del supporto inerziale sul controllo dell’impianto. In particolare, il Controllore Centrale di Impianto (CCI), responsabile della gestione centralizzata dell’impianto, è stato testato in due configurazioni (Feedforward con stima del ritardo e Smith Predictor) per valutarne l’impatto sulla stabilità nel controllo di un inverter Grid-Following. Inoltre, analizzando l’effetto del supporto inerziale fornito da una Macchina Sincrona Virtuale (MSV) in risposta ad un evento di variazione di frequenza, è stato valutato l’impatto sulla risposta del sistema in presenza di un inverter Grid-Forming Nel caso di studio con inverter Grid-Following, è stato dimostrato che, poiché lo schema Feedforward non è in grado di determinare la stabilità del sistema ad anello chiuso dell’impianto, lo Smith Predictor si dimostra essere più adatto per il controllo di processi affetti da disturbi o ritardi che causano instabilità. Nel caso di inverter Grid-Forming, entrambe le configurazioni dei controllori hanno fornito come risultato un’errata compensazione della potenza di supporto inerziale fornita dalla MSV. Pertanto, una soluzione atta a mascherare al CCI la potenza inerziale della MSV è stata proposta. Attraverso studi di stabilità e analisi di risposta del sistema nei due casi di inverter in Grid-Following e Grid-Forming, questa ricerca mira a fornire uno strumento per migliorare l’efficacia del controllo centralizzato ad opera del CCI all’interno degli impianti BESS.
BESS control strategy: compensation of delays and inertial response
Lupicino, Francesco
2024/2025
Abstract
As the global push for decarbonization accelerates, the integration of Renewable Energy Sources (RES) has grown significantly, posing challenges to power system stability due to the decline of synchronous inertia. The increasing presence of Inverter-Based Resources (IBRs) has further impacted grid dynamics, as conventional Grid-Following (GFL) inverters lack synchronous machine characteristics, such as frequency response. To overcome these limitations, Grid-Forming (GFM) inverters have emerged as a viable solution, providing improved voltage and frequency control, particularly in low-inertia conditions. Battery Energy Storage Systems (BESS) play a crucial role in this transition, offering rapid response capabilities and enhanced grid stability. However, real-world BESS plants face performance challenges due to communication latencies and inverter control complexities. This study presents a BESS plant model, designed to analyze the effects of communication delays and inertial support on plant control. Specifically, the Power Plant Controller (PPC), responsible for centralized plant management, has been tested in two configurations (Feedforward with delay estimation and Smith Predictor) to assess its impact on stability when regulating Grid-Following inverters. Additionally, the influence of Virtual Synchronous Machine (VSM) inertial support on plant response has been evaluated, introducing in the model a new input representing the provision of inertial power in response to a Rate of Change of Frequency (RoCoF). In Grid-Following scenario, it has been demonstrated that, since the feedforward scheme is not able to determine the stability of the closed loop system model of the plant, Smith Predictor could be more suitable for controlling processes with uncertainties causing instability. When controlling Grid-Forming inverter, both controllers’ configurations have demonstrated to wrongly compensate for the inertial support of the VSM, therefore a solution to hide the inertial power has been provided. Through stability studies and system response analysis in both Grid-Following and Grid-Forming inverter cases, this research aims to provide a tool to enhance the effectiveness of centralized control by the PPC within BESS plants.File | Dimensione | Formato | |
---|---|---|---|
2025_04_Lupicino_Thesis.pdf
non accessibile
Descrizione: Thesis main text
Dimensione
2.37 MB
Formato
Adobe PDF
|
2.37 MB | Adobe PDF | Visualizza/Apri |
2025_04_Lupicino_Executive_Summary.pdf
non accessibile
Descrizione: Executive summary of the thesis
Dimensione
1.08 MB
Formato
Adobe PDF
|
1.08 MB | Adobe PDF | Visualizza/Apri |
I documenti in POLITesi sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.
https://hdl.handle.net/10589/234192