The aim of this thesis is to address the problem of optimizing the floating system of a Floating Wind Turbine (FWT), a promising solution for utilizing offshore wind energy in deep waters. The main objective is to minimize the cost function of the substructure, consisting of a cylindrical spar-buoy platform with three catenary mooring lines, while ensuring a low computational time. To this end, a reduced model of a 5 MW FWT is proposed as an alternative to a full model, which involves the use of dynamic simulations to assess extreme conditions as required by regulations. In the initial phase of the study, a parametric analysis of the floater is conducted to compare the results obtained through static simulations with those of the full model, evaluating the consistency between the two approaches. Subsequently, an optimization cycle is developed, exploring various strategies to achieve an effective trade-off between result accuracy and computational cost. Finally, the thesis introduces the definition of a multibody model of a 22 MW FWT, based on the IEA 22 MW RWT reference. This represents an initial step in assessing the scalability of the proposed approach and identifying potential challenges arising from significant size variations. Overall, the results highlight how a simplified approach based on static simulations can serve as a valuable tool in the preliminary design phase, while dynamic verifications remain necessary to ensure the validity of the proposed solutions.
La presente tesi verte ad affrontare il problema dell’ottimizzazione del sistema di galleggiamento di una turbina eolica flottante (Floating Wind Turbine, FWT), una soluzione promettente per lo sfruttamento dell’energia eolica offshore in acque profonde. L'obiettivo principale è la minimizzazione della funzione di costo della sottostruttura, costituita da una piattaforma cilindrica (spar-buoy) con tre linee di ormeggio catenarie, garantendo al contempo un contenuto tempo computazionale. A tal fine, viene proposto un modello ridotto della FWT da 5 MW, alternativo a un modello completo che prevede l’utilizzo di simulazioni dinamiche per la verifica delle condizioni estreme richieste dalla normativa. Nella prima fase dello studio, viene condotta un’analisi parametrica del galleggiante al fine di confrontare i risultati ottenuti mediante simulazioni statiche con quelli del modello completo, valutandone l’adesione dei due approcci. Successivamente, viene sviluppato un ciclo di ottimizzazione, esplorando diverse strategie per ottenere un compromesso efficace tra accuratezza del risultato e costo computazionale. Infine, la tesi introduce la definizione di un modello multi-corpo di una FWT da 22 MW, basata sul riferimento IEA 22 MW RWT. Questo risulta essere uno step iniziale per valutare la scalabilità dell’approccio proposto ed evidenziare eventuali criticità indotte dalla grande variazione di dimensioni. In generale, i risultati evidenziano come l’impiego di un approccio semplificato, basato su simulazioni statiche, possa costituire un valido strumento nella fase preliminare di progettazione, pur rendendo necessarie verifiche dinamiche per garantire la validità delle soluzioni proposte.
Spar-buoy floating platforms design optimization: combining static and dynamic simulations for cost-effective solutions
Galimberti, Simone
2023/2024
Abstract
The aim of this thesis is to address the problem of optimizing the floating system of a Floating Wind Turbine (FWT), a promising solution for utilizing offshore wind energy in deep waters. The main objective is to minimize the cost function of the substructure, consisting of a cylindrical spar-buoy platform with three catenary mooring lines, while ensuring a low computational time. To this end, a reduced model of a 5 MW FWT is proposed as an alternative to a full model, which involves the use of dynamic simulations to assess extreme conditions as required by regulations. In the initial phase of the study, a parametric analysis of the floater is conducted to compare the results obtained through static simulations with those of the full model, evaluating the consistency between the two approaches. Subsequently, an optimization cycle is developed, exploring various strategies to achieve an effective trade-off between result accuracy and computational cost. Finally, the thesis introduces the definition of a multibody model of a 22 MW FWT, based on the IEA 22 MW RWT reference. This represents an initial step in assessing the scalability of the proposed approach and identifying potential challenges arising from significant size variations. Overall, the results highlight how a simplified approach based on static simulations can serve as a valuable tool in the preliminary design phase, while dynamic verifications remain necessary to ensure the validity of the proposed solutions.File | Dimensione | Formato | |
---|---|---|---|
2025_04_Galimberti_Executive Summary.pdf
accessibile in internet per tutti
Descrizione: Executive Summary
Dimensione
1.46 MB
Formato
Adobe PDF
|
1.46 MB | Adobe PDF | Visualizza/Apri |
2025_04_Galimberti_Tesi.pdf
accessibile in internet per tutti
Descrizione: Testo della tesi
Dimensione
7.02 MB
Formato
Adobe PDF
|
7.02 MB | Adobe PDF | Visualizza/Apri |
I documenti in POLITesi sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.
https://hdl.handle.net/10589/234194