The construction sector is one of the largest sources of energy consumption and greenhouse gas emissions globally, accounting for approximately one-third of the total and significantly contributing to climate change. The latest version of the European Energy Performance of Buildings Directive (EPBD IV) suggests that energy demand and consumption can be calculated on an hourly basis using dynamic energy simulation and the currently applicable technical standard suited for this purpose is ISO 52016-1:2017. This study analyzes and compares the calculation of solar gains according to ISO 52016-1:2017 (by developing a Python code validated with BESTEST cases) and the TRNSYS 18 software. The analysis focuses on the calculation of solar irradiance, the variation of the solar factor, the incoming solar radiation through windows, the resulting internal solar gains and the energy demand for three types of glass in two Italian locations. To determine internal solar gains, the principle of superposition of effects was applied, as this value cannot be directly derived from the calculations of ISO 52016-1:2017. The comparison of the solar factor trend between TRNSYS and ISO 52016-1:2017 benefits from the application of the Italian Annex to the latter, as it is a function of the solar incidence angle. Moreover, the difference in incoming solar radiation is reduced between 2% and 7% in July with the use of the Italian Annex, which proves effective in obtaining accurate results, especially for locations closer to the equator. The Italian Annex tends to underestimate internal solar gains compared to ISO 52016-1:2017 by up to 12%, with a greater difference observed during the summer months. Internal solar gains affect air temperature and, consequently, heat exchange through transmission and ventilation, which impact energy needs. Specifically, the Italian Annex overestimates the annual heating energy needs compared to ISO 52016-1:2017 by up to 11%, while underestimating the cooling energy needs by 6% to 12%.
Il settore delle costruzioni è una delle maggiori fonti di consumo energetico ed emissioni di gas serra a livello globale, rappresentando circa un terzo del totale e contribuendo in modo significativo al cambiamento climatico. L’ultima versione della Direttiva Europea sulle Prestazioni Energetiche degli Edifici (EPBD IV) suggerisce che il fabbisogno e il consumo di energia possano essere calcolati su base oraria, con una simulazione energetica dinamica e la norma tecnica attualmente in vigore adatta allo scopo è la ISO 52016-1:2017. Il presente studio analizza e confronta il calcolo degli apporti solari secondo ISO 52016-1:2017 (mettendo a punto un codice Python validato con casi BESTEST) e il software TRNSYS 18. L’analisi riguarda il calcolo dell’irradianza solare, la variazione del fattore solare, della radiazione solare entrante dalle finestre, i conseguenti apporti solari interni e i fabbisogni energetici per tre tipologie di vetro in due località italiane. Per determinare gli apporti solari interni, è stato applicato il principio di sovrapposizione degli effetti, poiché tale valore non è direttamente ricavabile dai calcoli della ISO 52016-1:2017. Il confronto dell’andamento del fattore solare fra TRNSYS e ISO 52016-1:2017 risente positivamente dell’applicazione dell’Allegato italiano a quest’ultima, in quanto funzione dell’angolo di incidenza solare. Inoltre, la differenza di radiazione solare entrante si riduce tra il 2% e il 7% per il mese di luglio con l’uso dell’Allegato italiano, che risulta efficace per ottenere risultati accurati soprattutto per le località più vicine all’equatore. L’Allegato italiano tende a sottostimare gli apporti solari interni rispetto alla ISO 52016-1:2017 fino al 12%, con una differenza maggiore durante i mesi estivi. Dagli apporti solari interni dipendono la temperatura dell’aria e di conseguenza lo scambio per trasmissione e per ventilazione, che incidono sul fabbisogno energetico. Nello specifico, l’Allegato italiano sovrastima il fabbisogno annuale di riscaldamento rispetto alla ISO 52016-1:2017 fino all’11%, mentre sottostima quello di raffrescamento tra il 6% e il 12%.
Apporti solari con calcolo dinamico: confronto tra ISO 52016-1:2017, Allegato italiano e Trnsys
Frison, Chiara
2023/2024
Abstract
The construction sector is one of the largest sources of energy consumption and greenhouse gas emissions globally, accounting for approximately one-third of the total and significantly contributing to climate change. The latest version of the European Energy Performance of Buildings Directive (EPBD IV) suggests that energy demand and consumption can be calculated on an hourly basis using dynamic energy simulation and the currently applicable technical standard suited for this purpose is ISO 52016-1:2017. This study analyzes and compares the calculation of solar gains according to ISO 52016-1:2017 (by developing a Python code validated with BESTEST cases) and the TRNSYS 18 software. The analysis focuses on the calculation of solar irradiance, the variation of the solar factor, the incoming solar radiation through windows, the resulting internal solar gains and the energy demand for three types of glass in two Italian locations. To determine internal solar gains, the principle of superposition of effects was applied, as this value cannot be directly derived from the calculations of ISO 52016-1:2017. The comparison of the solar factor trend between TRNSYS and ISO 52016-1:2017 benefits from the application of the Italian Annex to the latter, as it is a function of the solar incidence angle. Moreover, the difference in incoming solar radiation is reduced between 2% and 7% in July with the use of the Italian Annex, which proves effective in obtaining accurate results, especially for locations closer to the equator. The Italian Annex tends to underestimate internal solar gains compared to ISO 52016-1:2017 by up to 12%, with a greater difference observed during the summer months. Internal solar gains affect air temperature and, consequently, heat exchange through transmission and ventilation, which impact energy needs. Specifically, the Italian Annex overestimates the annual heating energy needs compared to ISO 52016-1:2017 by up to 11%, while underestimating the cooling energy needs by 6% to 12%.File | Dimensione | Formato | |
---|---|---|---|
2025_04_Frison.pdf
accessibile in internet per tutti a partire dal 12/03/2026
Descrizione: Tesi
Dimensione
5.37 MB
Formato
Adobe PDF
|
5.37 MB | Adobe PDF | Visualizza/Apri |
I documenti in POLITesi sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.
https://hdl.handle.net/10589/234197