Cylindrical magnetic nanowires are a prototypical platform to investigate three-dimensional magnetization dynamics and are considered as fundamental components for next-generation storage devices. Nanowires can support a unique type of magnetic domain wall (DW) known as the Bloch-Point-Wall (BPW). A key characteristic of BPWs is the curling of magnetization driven by dipolar energy, a feature intrinsic to three-dimensional systems. Recently, interest has grown in the effect of the strong Oersted field generated by the electric current flowing through a wire, which plays a fundamental role by directly interacting with the BPW. Due to its distinctive topology, the BPW enables ultra-fast DW motion by significantly delaying the Walker breakdown, and pioneering studies have demonstrated experimental BPW motion driven by spin-transfer torque, achieving velocities of several hundred m/s. Simulations further suggest a complex mechanism underlying circulation switching in the presence of an initially antiparallel Oersted field. While, recently, simulations have been able to fit and drive the experiment’s direction, in particular via X-ray Magnetic Circular Dichroism (XMCD), toward meaningful insight, the results from theoretical and experimental works are not compatible and generally hinder a direct comparison. This work proposes a solution to this incompatibility, by developing a tool able to extract and compute comparable data from simulations and experiments. The dynamics of experiments is successfully tracked. Evidence of domain wall shrinking with temperature decrease is found. Evidence of different dynamic time length is observed for current pulses of opposite sign, together with evidence of faster dynamics with higher current pulses. The dynamics of simulations is successfully tracked. A link is found between dynamics and vortices and antivortices behaviour on the nanowire’s surface. Even if comparison between simulations and experiments at this early stage shows some discrepancies, to the best of our knowledge, our theory appears as the first milestone towards a correct description and interpretation of the observed phenomena.
I nanofili magnetici cilindrici sono una piattaforma prototipica per indagare la dinamica di magnetizzazione tridimensionale e sono componenti fondamentali per dispositivi di storage di nuova generazione. I nanofili mostrano un tipo unico di parete di dominio magnetico (DW) noto come Bloch-Point-Wall (BPW). Una caratteristica distintiva dei BPW è l'arricciamento della magnetizzazione guidato dall'energia dipolare, un tratto intrinseco dei sistemi tridimensionali. Di recente, è cresciuto l’interesse per l'effetto del campo di Oersted generato dalla corrente elettrica che scorre attraverso il filo. Questa svolge un ruolo fondamentale interagendo direttamente con il BPW. Il BPW consente un moto ultrarapido della parete di dominio ritardando significativamente il Walker breakdown. Studi pioneristici hanno dimostrato il movimento sperimentale del BPW mediante trasferimento di momento di spin, raggiungendo velocità di diverse centinaia di m/s. Le simulazioni suggeriscono inoltre un meccanismo complesso alla base del cambio di circolazione in presenza di un campo di Oersted inizialmente antiparallelo. Le simulazioni sono state in grado di guidare la direzione degli esperimenti di X-ray Magnetic Circular Dichroism (XMCD), i risultati dei lavori teorici e sperimentali non sono confrontabili. Questo lavoro propone una soluzione a tale incompatibilità, sviluppando uno strumento in grado di estrarre dati comparabili da simulazioni ed esperimenti. La dinamica degli esperimenti è tracciata con successo. Si riscontra una riduzione della parete di dominio con il diminuire della temperatura. Si osservano diverse lunghezze temporali nella dinamica per impulsi di corrente di segno opposto, insieme all'evidenza di dinamiche più rapide per impulsi di corrente più intensi. La dinamica delle simulazioni è tracciata con successo. Si trova un legame tra dinamica e comportamento di singolarità di superficie del nanofilo. Anche se il confronto tra simulazioni ed esperimenti in questa fase iniziale mostra alcune discrepanze, la nostra teoria rappresenta il primo passo verso una corretta descrizione e interpretazione dei fenomeni osservati.
Analysis of Oersted-field-induced nanosecond dynamics of Bloch-Point Walls in nanowires
FANTAUZZI, LORENZO
2023/2024
Abstract
Cylindrical magnetic nanowires are a prototypical platform to investigate three-dimensional magnetization dynamics and are considered as fundamental components for next-generation storage devices. Nanowires can support a unique type of magnetic domain wall (DW) known as the Bloch-Point-Wall (BPW). A key characteristic of BPWs is the curling of magnetization driven by dipolar energy, a feature intrinsic to three-dimensional systems. Recently, interest has grown in the effect of the strong Oersted field generated by the electric current flowing through a wire, which plays a fundamental role by directly interacting with the BPW. Due to its distinctive topology, the BPW enables ultra-fast DW motion by significantly delaying the Walker breakdown, and pioneering studies have demonstrated experimental BPW motion driven by spin-transfer torque, achieving velocities of several hundred m/s. Simulations further suggest a complex mechanism underlying circulation switching in the presence of an initially antiparallel Oersted field. While, recently, simulations have been able to fit and drive the experiment’s direction, in particular via X-ray Magnetic Circular Dichroism (XMCD), toward meaningful insight, the results from theoretical and experimental works are not compatible and generally hinder a direct comparison. This work proposes a solution to this incompatibility, by developing a tool able to extract and compute comparable data from simulations and experiments. The dynamics of experiments is successfully tracked. Evidence of domain wall shrinking with temperature decrease is found. Evidence of different dynamic time length is observed for current pulses of opposite sign, together with evidence of faster dynamics with higher current pulses. The dynamics of simulations is successfully tracked. A link is found between dynamics and vortices and antivortices behaviour on the nanowire’s surface. Even if comparison between simulations and experiments at this early stage shows some discrepancies, to the best of our knowledge, our theory appears as the first milestone towards a correct description and interpretation of the observed phenomena.File | Dimensione | Formato | |
---|---|---|---|
executive_summary_finale.pdf
accessibile in internet per tutti a partire dal 07/03/2028
Descrizione: Executive summary
Dimensione
1.18 MB
Formato
Adobe PDF
|
1.18 MB | Adobe PDF | Visualizza/Apri |
TESI_finale.pdf
accessibile in internet per tutti a partire dal 07/03/2028
Descrizione: Tesi
Dimensione
5.89 MB
Formato
Adobe PDF
|
5.89 MB | Adobe PDF | Visualizza/Apri |
I documenti in POLITesi sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.
https://hdl.handle.net/10589/234213