Modern power systems are progressively experiencing the replacement of conventional power plants based on synchronous generators (SGs), in favor of renewable energy sources (RES). Since these power sources are interfaced with the grid via power electronics units, such as Voltage Source Converters (VSCs), their exploitation poses new challenges in power systems, particularly in terms of stability. In this context, new types of converter driven instability are emerging as significant topics in the research community: converters control loops may interact with other components of the power grid. This thesis aims to provide a comprehensive analysis of the limits of grid-following (GFOL) and grid-supporting operations; the impact of different VSC control structures on system stability is examined through a sensitivity analysis and the mechanisms of interaction between VSCs and SGs are identified. To achieve the designated objective, electromagnetic transients (EMT) linear models of VSC, SG, and AC grid are developed. The proposed approach is based on independent linear state-space models, which, thanks to their modularity, are integrated in a complete model with high penetration of VSCs. Thus, a small signal stability analysis of the complete system is performed, with the gradual implementation of different VSC control structures, by computing the eigenvalues and the participation factors (PF). By scaling the parameters of VSC controllers, the full-sensitivity analysis showed which control structures may be the root causes of system instability: the phase-locked loop (PLL), the DC voltage control and the frequency droop function may be troublesome in terms of small signal stability. Moreover, from the beginning of the analysis, the coupling between the PLL and the SG is discussed; also, the VSC and SG are highly coupled when the DC voltage control is implemented. The frequency and voltage supporting functions can cause significant interactions between the VSC and the SG: the VSC power control may interact with the exciter, the VSC active power control may interact with the frequency of the generator, and the DC voltage control may interact with SG dynamics.
I sistemi elettrici stanno sperimentando una graduale sostituzione delle centrali tradizionali, basate su generatori sincroni (SGs), a favore di fonti rinnovabili. Poiché queste fonti di energia sono collegate alla rete tramite dispositivi di elettronica di potenza, come convertitori a tensione controllata (VSCs), il loro sviluppo pone nuove sfide nella gestione delle reti, in termini di stabilità. Infatti, nuove forme di instabilità (converter-driven) stanno diventando temi di rilievo nella ricerca: i controllori dei convertitori potrebbero interagire con altri elementi della rete. Questa tesi ha l’obbiettivo di fornire un’analisi sui limiti di funzionamento dei convertitori in modalità sincrona alla rete (GFOL) o di supporto alla rete; attraverso un’analisi di sensitività, viene esaminato l’impatto dei controllori dei VSC sulla stabilità del sistema e vengono individuate le principali interazioni tra VSC e SG. Per raggiungere l’obbiettivo, vengono sviluppati modelli lineari del convertitore, del generatore e della rete. La metodologia scelta si basa su modelli lineari in spazio di stato che, grazie alla loro modularità, sono integrati in un unico sistema. Introducendo gradualmente i controllori, viene effettuata un’analisi al piccolo segnale dell’intero sistema, calcolando gli autovalori e i fattori di partecipazione (PF). Cambiando i parametri dei controllori del VSC, l’analisi di sensitività sugli autovalori ha permesso di identificare quali controllori potrebbero essere causa di instabilità: il PLL, il controllo sulla tensione DC e il controllo di frequenza potrebbero essere problematici per la stabilità al piccolo segnale. Fin dall’inizio dell’analisi, viene osservata un’interazione tra il PLL e il SG; ancora, il VSC e il SG sono fortemente accoppiati se viene implementato il controllo sulla porta DC. Le funzioni di supporto alla rete potrebbero causare ulteriori interazioni tra VSC e SG: il controllo di potenza del convertitore potrebbe interagire con il sistema di eccitazione del generatore, il controllo di potenza attiva potrebbe interagire con la frequenza di rete e il controllo sulla tensione DC potrebbe interagire con le dinamiche del generatore.
Small signal stability analysis of power grids with grid-following converters
Casiraghi, Alessandra
2023/2024
Abstract
Modern power systems are progressively experiencing the replacement of conventional power plants based on synchronous generators (SGs), in favor of renewable energy sources (RES). Since these power sources are interfaced with the grid via power electronics units, such as Voltage Source Converters (VSCs), their exploitation poses new challenges in power systems, particularly in terms of stability. In this context, new types of converter driven instability are emerging as significant topics in the research community: converters control loops may interact with other components of the power grid. This thesis aims to provide a comprehensive analysis of the limits of grid-following (GFOL) and grid-supporting operations; the impact of different VSC control structures on system stability is examined through a sensitivity analysis and the mechanisms of interaction between VSCs and SGs are identified. To achieve the designated objective, electromagnetic transients (EMT) linear models of VSC, SG, and AC grid are developed. The proposed approach is based on independent linear state-space models, which, thanks to their modularity, are integrated in a complete model with high penetration of VSCs. Thus, a small signal stability analysis of the complete system is performed, with the gradual implementation of different VSC control structures, by computing the eigenvalues and the participation factors (PF). By scaling the parameters of VSC controllers, the full-sensitivity analysis showed which control structures may be the root causes of system instability: the phase-locked loop (PLL), the DC voltage control and the frequency droop function may be troublesome in terms of small signal stability. Moreover, from the beginning of the analysis, the coupling between the PLL and the SG is discussed; also, the VSC and SG are highly coupled when the DC voltage control is implemented. The frequency and voltage supporting functions can cause significant interactions between the VSC and the SG: the VSC power control may interact with the exciter, the VSC active power control may interact with the frequency of the generator, and the DC voltage control may interact with SG dynamics.File | Dimensione | Formato | |
---|---|---|---|
2025_04_Casiraghi_Thesis.pdf
non accessibile
Descrizione: Testo della tesi
Dimensione
10.11 MB
Formato
Adobe PDF
|
10.11 MB | Adobe PDF | Visualizza/Apri |
2025_04_Casiraghi_Executive_Summary.pdf
solo utenti autorizzati a partire dal 10/03/2026
Descrizione: Executive summary della tesi
Dimensione
2.24 MB
Formato
Adobe PDF
|
2.24 MB | Adobe PDF | Visualizza/Apri |
I documenti in POLITesi sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.
https://hdl.handle.net/10589/234292