The thesis explores the impact of dynamic facades on daylighting and visual comfort, bridging the gap between theoretical classification, performance-based analysis, and human-centred assessments. While dynamic facades are widely studied for their energy efficiency, their influence on visual comfort and human perception remains underexplored. This study addresses this gap by integrating a critical taxonomy, simulation-based daylighting evaluations, and experimental user response assessments to provide a comprehensive understanding of how adaptive shading systems shape indoor environments. The first part of the research establishes a structured classification of dynamic facades, identifying five fundamental operating principles – Bending, Folding, Rotating, Sliding, and Twisting – based on an analysis of 67 real-world case studies. It also highlights the lack of uniform terminology in existing literature and the dominance of energy-focused research, emphasizing the need for a visual comfort-centred approach. The second part quantitatively evaluates the daylighting, view-out, and energy performance of different dynamic shading strategies through simulation-based analysis. The results show that Rotating and Sliding facades offer the best overall balance, effectively controlling glare and daylight penetration while maintaining good external views and reducing incident solar radiation. The study also introduces an Equivalent Openness Factor (OF-eq) to assess view- out conditions, providing a more accurate measure for dynamically changing systems. The third part shifts towards human-centred experimentation, combining subjective surveys and objective physiological measurements, though facial electromyography fEMG, to assess real-time user responses to different daylight conditions. The findings confirm that automated shading systems significantly enhance visual comfort, reducing the physiological strain associated with glare. The introduction of an fEMG-based discomfort scale establishes new thresholds for glare perception, with facial muscle activations exceeding 80 microvolts indicating intolerable glare, while levels below 20 microvolts correspond to visual ease. Importantly, the study demonstrates that anticipatory shading control – rather than reactive manual adjustments – is key to minimizing discomfort. By integrating taxonomy, performance metrics, and human responses, this research provides a holistic framework for evaluating dynamic facades beyond energy efficiency. The findings emphasize the importance of user-centred design, demonstrating that adaptive facades must not only optimize daylighting performance but also align with human perception and physiological responses. These insights offer direct implications for future facade design, advocating for intelligent automation strategies that enhance both environmental performance and occupant well-being. Ultimately, this study reinforces the critical role of dynamic facades in creating comfortable, sustainable, and responsive indoor environments.
La tesi esplora l'impatto delle facciate dinamiche sulla luce naturale e sul comfort visivo, colmando il divario tra classificazione teorica, analisi delle prestazioni e valutazioni basate sull'utente. Sebbene le facciate dinamiche siano ampiamente studiate per la loro efficienza energetica, la loro influenza sul comfort visivo e sulla percezione umana rimane poco approfondita. Questo studio affronta questa lacuna integrando una tassonomia critica, valutazioni delle prestazioni basate su simulazioni e analisi sperimentali delle risposte degli utenti, offrendo una comprensione completa di come i sistemi di schermatura adattivi modellino gli ambienti interni. La prima parte della ricerca definisce una classificazione strutturata delle facciate dinamiche, identificando cinque principi operativi fondamentali – Inflessione, Piegatura, Rotazione, Scorrimento e Torsione – sulla base dell’analisi di 67 casi studio reali. Inoltre, evidenzia la mancanza di una terminologia uniforme nella letteratura esistente e la prevalenza degli studi focalizzati sull’energia, sottolineando la necessità di un approccio incentrato sul comfort visivo. La seconda parte valuta quantitativamente, tramite simulazioni, le prestazioni in termini di illuminazione naturale, qualità della vista esterna e controllo della radiazione solare di diverse strategie di schermatura dinamica. I risultati dimostrano che le facciate a Rotazione e Scorrimento offrono il miglior equilibrio complessivo, regolando efficacemente l'abbagliamento e la penetrazione della luce naturale, mantenendo una buona visibilità esterna e riducendo la radiazione solare incidente. Inoltre, lo studio introduce un Fattore di Apertura Equivalente (OF-eq) per valutare le condizioni di vista esterna nei sistemi dinamici. La terza parte si concentra sull’esperienza degli utenti, combinando indagini soggettive e misurazioni fisiologiche oggettive, tramite elettromiografia facciale fEMG, per analizzare le risposte in tempo reale a diverse condizioni di luce naturale. I risultati confermano che i sistemi di schermatura automatizzati migliorano significativamente il comfort visivo, riducendo l'affaticamento fisiologico associato all'abbagliamento. L’introduzione di una scala di disagio basata su fEMG definisce nuove soglie per la percezione dell’abbagliamento, indicando che attivazioni muscolari superiori a 80 microvolt corrispondono a un disagio intollerabile, mentre livelli inferiori a 20 microvolt indicano una condizione di comfort visivo. Lo studio dimostra inoltre che un controllo proattivo delle schermature, anziché regolazioni manuali reattive, è essenziale per ridurre il disagio. Integrando tassonomia, metriche di prestazione e risposte umane, questa ricerca propone un quadro di valutazione globale delle facciate dinamiche, andando oltre la semplice efficienza energetica. I risultati sottolineano l'importanza di una progettazione orientata all’utente, dimostrando che le facciate adattive devono non solo ottimizzare le prestazioni luminose, ma anche allinearsi alla percezione umana e alle risposte fisiologiche. Queste conclusioni hanno implicazioni dirette per la progettazione futura delle facciate, promuovendo strategie di automazione intelligente capaci di migliorare sia le prestazioni ambientali che il benessere degli occupanti. In definitiva, lo studio rafforza il ruolo cruciale delle facciate dinamiche nella creazione di ambienti interni confortevoli, sostenibili e reattivi.
The impact of dynamic facades on daylighting and visual comfort: from a critical taxonomy and case study analysis to simulation-based and virtual reality performance assessment
Canato, Andrea
2023/2024
Abstract
The thesis explores the impact of dynamic facades on daylighting and visual comfort, bridging the gap between theoretical classification, performance-based analysis, and human-centred assessments. While dynamic facades are widely studied for their energy efficiency, their influence on visual comfort and human perception remains underexplored. This study addresses this gap by integrating a critical taxonomy, simulation-based daylighting evaluations, and experimental user response assessments to provide a comprehensive understanding of how adaptive shading systems shape indoor environments. The first part of the research establishes a structured classification of dynamic facades, identifying five fundamental operating principles – Bending, Folding, Rotating, Sliding, and Twisting – based on an analysis of 67 real-world case studies. It also highlights the lack of uniform terminology in existing literature and the dominance of energy-focused research, emphasizing the need for a visual comfort-centred approach. The second part quantitatively evaluates the daylighting, view-out, and energy performance of different dynamic shading strategies through simulation-based analysis. The results show that Rotating and Sliding facades offer the best overall balance, effectively controlling glare and daylight penetration while maintaining good external views and reducing incident solar radiation. The study also introduces an Equivalent Openness Factor (OF-eq) to assess view- out conditions, providing a more accurate measure for dynamically changing systems. The third part shifts towards human-centred experimentation, combining subjective surveys and objective physiological measurements, though facial electromyography fEMG, to assess real-time user responses to different daylight conditions. The findings confirm that automated shading systems significantly enhance visual comfort, reducing the physiological strain associated with glare. The introduction of an fEMG-based discomfort scale establishes new thresholds for glare perception, with facial muscle activations exceeding 80 microvolts indicating intolerable glare, while levels below 20 microvolts correspond to visual ease. Importantly, the study demonstrates that anticipatory shading control – rather than reactive manual adjustments – is key to minimizing discomfort. By integrating taxonomy, performance metrics, and human responses, this research provides a holistic framework for evaluating dynamic facades beyond energy efficiency. The findings emphasize the importance of user-centred design, demonstrating that adaptive facades must not only optimize daylighting performance but also align with human perception and physiological responses. These insights offer direct implications for future facade design, advocating for intelligent automation strategies that enhance both environmental performance and occupant well-being. Ultimately, this study reinforces the critical role of dynamic facades in creating comfortable, sustainable, and responsive indoor environments.File | Dimensione | Formato | |
---|---|---|---|
Thesis_CANATO_225864.pdf
non accessibile
Dimensione
123.02 MB
Formato
Adobe PDF
|
123.02 MB | Adobe PDF | Visualizza/Apri |
I documenti in POLITesi sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.
https://hdl.handle.net/10589/234301