In motorsport, one of the biggest differentiators is aerodynamic performance. Today, aerodynamic optimization is a fundamental aspect of race car engineering, as even small adjustments can have a significant impact on overall performance. In the case of Group GT3, teams have very limited access to aerodynamic maps and other design information, limiting their ability to make informed decisions on track. The aim of this thesis is to develop and apply a reverse engineering methodology for performing the aerodynamic characterization and extract aeromaps of a Ferrari 296 GT3 using 3D scanning and CFD simulations. Although the application of reverse engineering combined with CFD is not new and is documented in the literature, its use on complete vehicles is rare, with only a few examples available. In the automotive industry, there is little interest in sharing or publishing results from such studies, and many companies offer these studies as a service. The novelty of this work lies in the complexity of the subject analyzed. To achieve the set objective, the following steps were undertaken: the entire car bodywork was 3D scanned and processed, a CAD model was created from this data, and several CFD analyses were performed. The CAD model obtained showed great accuracy and quality while capturing all the intricate details of the real vehicle. Conversely, the RANS simulations showed non-negligible oscillations in the flow field behind the wheels and in the car's underbody. This behavior has been critically evaluated. Nevertheless, aerodynamic maps have been extracted to attest the completeness of the workflow. Finally, observations are highlighted that could lead to future improvements in the current work.
Nel motorsport, uno degli elementi chiave che determina le prestazioni dei veicoli è l'aerodinamica. Oggi, l’ottimizzazione aerodinamica rappresenta un aspetto fondamentale nella progettazione delle vetture da competizione, poiché anche minime modifiche possono influenzare significativamente il tempo sul giro. Nel caso della categoria GT3, i team hanno un accesso estremamente limitato alle mappe aerodinamiche e ad altre specifiche di progetto, compromettendo la possibilità di prendere decisioni strategiche basate su dati oggettivi. L’obiettivo di questa tesi è sviluppare e applicare una metodologia di reverse engineering per caratterizzare il comportamento aerodinamico e ricavare le mappe aerodinamiche di una Ferrari 296 GT3, utilizzando la scansione 3D e simulazioni CFD. Sebbene l’integrazione del reverse engineering con la CFD non sia un approccio inedito e sia già documentato in letteratura, la sua applicazione a veicoli completi risulta ancora poco diffusa. Nel settore dell'automotive, vi è scarso interesse nella condivisione o pubblicazione dei risultati di tali analisi e molte aziende le offrono come servizio a pagamento. L’originalità di questo lavoro risiede nella complessità del caso analizzato. Per raggiungere gli obiettivi prefissati, sono state seguite diverse fasi: l’intera carrozzeria della vettura è stata sottoposta a scansione 3D ed elaborata, è stato creato un modello CAD a partire dai dati acquisiti, e successivamente sono state condotte numerose analisi CFD. Il modello CAD ottenuto si è rivelato estremamente accurato e dettagliato, riuscendo a catturare anche i dettagli più complessi del veicolo. D’altra parte, le simulazioni RANS hanno evidenziato alcune oscillazioni non trascurabili nel flusso d’aria dietro le ruote e sul fondo del veicolo, un fenomeno che è stato analizzato in modo critico. Nonostante ciò, è stato possibile estrarre le mappe aerodinamiche, a conferma della validità dell’intera metodologia adottata. Infine, sono stati discussi alcuni aspetti che potrebbero essere approfonditi e migliorati in studi futuri.
Ferrari 296 GT3 aerodynamic characterization through 3D scanning and CFD simulations
Ugolini, Emilio;UDERZO, MARCO
2023/2024
Abstract
In motorsport, one of the biggest differentiators is aerodynamic performance. Today, aerodynamic optimization is a fundamental aspect of race car engineering, as even small adjustments can have a significant impact on overall performance. In the case of Group GT3, teams have very limited access to aerodynamic maps and other design information, limiting their ability to make informed decisions on track. The aim of this thesis is to develop and apply a reverse engineering methodology for performing the aerodynamic characterization and extract aeromaps of a Ferrari 296 GT3 using 3D scanning and CFD simulations. Although the application of reverse engineering combined with CFD is not new and is documented in the literature, its use on complete vehicles is rare, with only a few examples available. In the automotive industry, there is little interest in sharing or publishing results from such studies, and many companies offer these studies as a service. The novelty of this work lies in the complexity of the subject analyzed. To achieve the set objective, the following steps were undertaken: the entire car bodywork was 3D scanned and processed, a CAD model was created from this data, and several CFD analyses were performed. The CAD model obtained showed great accuracy and quality while capturing all the intricate details of the real vehicle. Conversely, the RANS simulations showed non-negligible oscillations in the flow field behind the wheels and in the car's underbody. This behavior has been critically evaluated. Nevertheless, aerodynamic maps have been extracted to attest the completeness of the workflow. Finally, observations are highlighted that could lead to future improvements in the current work.File | Dimensione | Formato | |
---|---|---|---|
2025_04_Uderzo_Ugolini.pdf
accessibile in internet per tutti
Descrizione: Testo della tesi
Dimensione
83 MB
Formato
Adobe PDF
|
83 MB | Adobe PDF | Visualizza/Apri |
2025_04_Uderzo_Ugolini_ExecutiveSummary.pdf
accessibile in internet per tutti
Descrizione: Executive summary
Dimensione
12.04 MB
Formato
Adobe PDF
|
12.04 MB | Adobe PDF | Visualizza/Apri |
I documenti in POLITesi sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.
https://hdl.handle.net/10589/234326