The increasing global demand for efficient and sustainable energy sources has positioned Generation IV nuclear reactors as a promising solution. These reactors are designed to operate at higher temperatures and with greater efficiency than their predecessors, requiring advanced materials capable of withstanding extreme operational environments. One critical component is the nuclear fuel tube, which must endure severe thermal, mechanical, and chemical conditions without compromising reactor safety. For such critical operation conditions of the system, X-Nano has been developing Amorphous aluminium oxide (a-Al₂O₃) coatings, deposited on stainless steel substrates via pulsed laser deposition (PLD), emerging as crucial innovations for next-generation reactors. These coatings offer significant advantages in safety and economic viability, demonstrating potential for withstanding radiation, corrosion, and mechanical stress. However, the biggest challenge is the ability of the coating to deform without cracking or delaminating, in addition to withstanding the expected radiation and corrosion damage exposures. Within this framework, this thesis examines the high-temperature fracture behavior and deformation mechanics of nuclear fuel tubes, with a particular focus on Generation IV reactors. Using finite element analysis (FEA) in Abaqus, the structural and mechanical responses of tubes are simulated under supercritical conditions, including high temperatures, pressures, and mechanical loads. The study aims to replicate real-world scenarios, modeling thermal expansion, material fracture, stress concentration, and the equation of state of water, which are critical for predicting long-term performance and safety. Special attention is given to material behavior near supercritical conditions, where degradation and fracture are more likely. The Johnson-Cook model is employed to capture high-temperature plasticity and fracture, and the role of stress triaxiality and strain rate in material failure is explored. Ultimately, this work supports the development of more robust nuclear systems, contributing to the advancement of clean energy production.
La crescente domanda globale di fonti energetiche efficienti e sostenibili ha posizionato i reattori nucleari di IV generazione come una soluzione promettente. Questi reattori sono progettati per operare a temperature più elevate e con maggiore efficienza rispetto ai predecessori, richiedendo materiali avanzati in grado di resistere a ambienti operativi estremi. Un componente critico è il tubo del combustibile nucleare, che deve sopportare condizioni termiche, meccaniche e chimiche severe senza compromettere la sicurezza del reattore. Per queste condizioni operative critiche del sistema, X-Nano sta sviluppando rivestimenti di ossido di alluminio amorfo (a-Al₂O₃), depositati su substrati di acciaio inossidabile mediante deposizione laser pulsata (PLD), emergendo come innovazioni cruciali per i reattori di prossima generazione. Questi rivestimenti offrono vantaggi significativi in termini di sicurezza ed economicità, dimostrando potenziale nel resistere a radiazioni, corrosione e stress meccanico. Tuttavia, la sfida principale risiede nella capacità del rivestimento di deformarsi senza creparsi o delaminarsi, oltre a resistere alle esposizioni previste a danni da radiazione e corrosione. In questo contesto, questa tesi esamina il comportamento alla frattura ad alta temperatura e la meccanica di deformazione dei tubi del combustibile nucleare, con particolare attenzione ai reattori di IV generazione. Utilizzando l'analisi agli elementi finiti (FEA) in Abaqus, vengono simulate le risposte strutturali e meccaniche dei tubi in condizioni supercritiche, inclusi alte temperature, pressioni e carichi meccanici. Lo studio mira a replicare scenari reali, modellando l’espansione termica, la frattura del materiale, la concentrazione degli sforzi e l’equazione di stato dell’acqua, aspetti critici per prevedere prestazioni e sicurezza a lungo termine. Un’attenzione particolare è dedicata al comportamento del materiale in condizioni vicine al supercritico, dove degradazione e frattura sono più probabili. Il modello Johnson-Cook viene impiegato per descrivere la plasticità e la frattura ad alta temperatura, esplorando il ruolo della triassialità degli sforzi e della velocità di deformazione nel cedimento del materiale. In definitiva, questo lavoro supporta lo sviluppo di sistemi nucleari più robusti, contribuendo al progresso della produzione di energia pulita.
Structural analysis of tubes for nuclear applications subjected to water pressure in supercritical state
AL SAYEGH, RANI
2024/2025
Abstract
The increasing global demand for efficient and sustainable energy sources has positioned Generation IV nuclear reactors as a promising solution. These reactors are designed to operate at higher temperatures and with greater efficiency than their predecessors, requiring advanced materials capable of withstanding extreme operational environments. One critical component is the nuclear fuel tube, which must endure severe thermal, mechanical, and chemical conditions without compromising reactor safety. For such critical operation conditions of the system, X-Nano has been developing Amorphous aluminium oxide (a-Al₂O₃) coatings, deposited on stainless steel substrates via pulsed laser deposition (PLD), emerging as crucial innovations for next-generation reactors. These coatings offer significant advantages in safety and economic viability, demonstrating potential for withstanding radiation, corrosion, and mechanical stress. However, the biggest challenge is the ability of the coating to deform without cracking or delaminating, in addition to withstanding the expected radiation and corrosion damage exposures. Within this framework, this thesis examines the high-temperature fracture behavior and deformation mechanics of nuclear fuel tubes, with a particular focus on Generation IV reactors. Using finite element analysis (FEA) in Abaqus, the structural and mechanical responses of tubes are simulated under supercritical conditions, including high temperatures, pressures, and mechanical loads. The study aims to replicate real-world scenarios, modeling thermal expansion, material fracture, stress concentration, and the equation of state of water, which are critical for predicting long-term performance and safety. Special attention is given to material behavior near supercritical conditions, where degradation and fracture are more likely. The Johnson-Cook model is employed to capture high-temperature plasticity and fracture, and the role of stress triaxiality and strain rate in material failure is explored. Ultimately, this work supports the development of more robust nuclear systems, contributing to the advancement of clean energy production.File | Dimensione | Formato | |
---|---|---|---|
2025_4_AlSayegh.pdf
accessibile in internet solo dagli utenti autorizzati
Descrizione: Structural analysis of tubes for nuclear applications subjected to water pressure in supercritical state
Dimensione
13.92 MB
Formato
Adobe PDF
|
13.92 MB | Adobe PDF | Visualizza/Apri |
Executive_Summary.pdf
accessibile in internet solo dagli utenti autorizzati
Descrizione: Structural analysis of tubes for nuclear applications subjected to water pressure in supercritical state
Dimensione
1.37 MB
Formato
Adobe PDF
|
1.37 MB | Adobe PDF | Visualizza/Apri |
I documenti in POLITesi sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.
https://hdl.handle.net/10589/234336