The growing demand for high-quality and extremely specific biopharmaceuticals is nowadays pushing the biotechnology industry to a reconsideration of the process development stage, with the aim of reducing the amount of material required and compress the time-to-market. In this direction, the establishment of representative scale-down models for fast, resource-effective and reliable downstream process development has been one of the major goals of the biopharmaceutical industry in the last years. From this effort, microfluidic devices have emerged as powerful tools to address this challenge, as capable of providing quantitative information with minimal amount of material consumption. This, in turn, can be exploited for the establishment of mechanistic models of the process, allowing to increase its understanding and promote more conscious manufacturing, in line with the expectations of the Quality-by-Design initiative. This work demonstrates the potential of 3D printed microfluidic devices as valuable scale-down tools for fast process development in chromatography. A microfluidic chromatography column was developed and applied in the characterization of the adsorption equilibrium and mass transfer properties for mono- and multi-PEGylated lysozyme on a cation exchange resin. In particular, a series of breakthrough experiments at different salt concentrations enabled to evaluate, for each specie, the parameters of the Langmuir isotherm, and their dependency on the local modifier concentration. By regression of these breakthrough curves, performed by genetic algorithm, the lumped mass transfer rate and axial dispersion coefficient could finally be estimated. These results were exploited for the establishment of a mechanistic model of the chromatographic separation of the mono-PEGylated protein from its impurities. The accuracy of the calibrated model was finally verified on separations performed at laboratory scale, with a 5 mL column. After minor tuning of the parameters, satisfactory scale-up predictions were obtained using this model, thus demonstrating the potential of this approach in increasing process understanding, and in providing valuable insights into the process.
La domanda crescente di farmaci biologici di alta qualità ed estremamente specifici sta spingendo l'industria biofarmaceutica a riconsiderare i processi utilizzati in fase di sviluppo di un prodotto, con l'obiettivo di ridurre la quantità di materiale richiesto e il tempo necessario per la commercializzazione. In quest’ottica, negli ultimi anni l’industria biofarmaceutica si è concentrata sulla realizzazione di modelli in scala ridotta per lo sviluppo di processo in modo rapido, affidabile ed efficiente, in termini di consumo di risorse. I dispositivi microfluidici sono emersi come strumenti validi e potenti per affrontare questa sfida in quanto capaci di fornire informazioni quantitative e rappresentative con un consumo limitato di materiale. A sua volta, questo aspetto può essere sfruttato per lo sviluppo di modelli meccanicistici del processo, in grado di migliorarne la comprensione e di promuovere una produzione in linea con gli obiettivi dell’approccio Quality-by-Design. Questo lavoro dimostra il potenziale dei dispositivi microfluidici stampati in 3D come validi strumenti in scala ridotta per lo sviluppo rapido di processi cromatografici. Una colonna cromatografica microfluidica è stata realizzata e utilizzata per determinare le isoterme di adsorbimento e i parametri di trasporto di massa per il lisozima mono- e multi-PEGilato su una resina a scambio cationico. In particolare, una serie di curve di sfondamento a diverse concentrazioni di sale ha permesso di valutare, per ciascuna specie, i parametri dell’isoterma di Langmuir e la loro dipendenza dalla concentrazione locale del modificatore. A partire dalle curve di sfondamento e mediante una regressione eseguita utilizzando un algoritmo genetico, è stato possibile infine calibrare il modello stimando per ogni specie i coefficienti di trasporto di massa e di dispersione assiale. I risultati ottenuti sono stati utilizzati per lo sviluppo di un modello meccanicistico della separazione cromatografia della proteina mono-PEGilata dalle sue impurità. L'accuratezza del modello calibrato è stata verificata considerando separazioni eseguite su scala di laboratorio con una colonna da 5 mL. Utilizzando il modello con una minima messa a punto dei parametri, è stato possibile ottenere delle previsioni di scale-up soddisfacenti, dimostrando così il potenziale di questo approccio nell'aumentare la comprensione del processo e nel fornire preziose informazioni su di esso.
Microfluidic chromatography for fast downstream processing development
Sechi, Benedetta
2023/2024
Abstract
The growing demand for high-quality and extremely specific biopharmaceuticals is nowadays pushing the biotechnology industry to a reconsideration of the process development stage, with the aim of reducing the amount of material required and compress the time-to-market. In this direction, the establishment of representative scale-down models for fast, resource-effective and reliable downstream process development has been one of the major goals of the biopharmaceutical industry in the last years. From this effort, microfluidic devices have emerged as powerful tools to address this challenge, as capable of providing quantitative information with minimal amount of material consumption. This, in turn, can be exploited for the establishment of mechanistic models of the process, allowing to increase its understanding and promote more conscious manufacturing, in line with the expectations of the Quality-by-Design initiative. This work demonstrates the potential of 3D printed microfluidic devices as valuable scale-down tools for fast process development in chromatography. A microfluidic chromatography column was developed and applied in the characterization of the adsorption equilibrium and mass transfer properties for mono- and multi-PEGylated lysozyme on a cation exchange resin. In particular, a series of breakthrough experiments at different salt concentrations enabled to evaluate, for each specie, the parameters of the Langmuir isotherm, and their dependency on the local modifier concentration. By regression of these breakthrough curves, performed by genetic algorithm, the lumped mass transfer rate and axial dispersion coefficient could finally be estimated. These results were exploited for the establishment of a mechanistic model of the chromatographic separation of the mono-PEGylated protein from its impurities. The accuracy of the calibrated model was finally verified on separations performed at laboratory scale, with a 5 mL column. After minor tuning of the parameters, satisfactory scale-up predictions were obtained using this model, thus demonstrating the potential of this approach in increasing process understanding, and in providing valuable insights into the process.File | Dimensione | Formato | |
---|---|---|---|
2025_04_Sechi_Executive Summary.pdf
non accessibile
Descrizione: Executive Summary
Dimensione
1.22 MB
Formato
Adobe PDF
|
1.22 MB | Adobe PDF | Visualizza/Apri |
2025_04_Sechi_Tesi.pdf
non accessibile
Descrizione: Tesi
Dimensione
7.63 MB
Formato
Adobe PDF
|
7.63 MB | Adobe PDF | Visualizza/Apri |
I documenti in POLITesi sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.
https://hdl.handle.net/10589/234378