Facade materials in the built environment possess a solar reflectance index related to their physical properties. Modern technologies have expanded the choice of materials, both transparent and opaque, favoring solutions capable of reducing the penetration of solar radiation inside buildings. However, materials such as metals, low-emissivity glass, and high-reflectance glass, while limiting internal heat gain, reflect solar radiation toward the external environment, causing potential visual and thermal discomfort. Many countries have already updated their building regulations limiting solar reflectance, while in Italy the problem is not yet regulated. Research conducted on road accidents in the United States shows that glare from solar reflection is a cause of driver distraction almost on par with cell phones. This thesis proposes a framework for detecting the problem in urban environments, working on-site. The simulation part can identify areas of greater exposure to reflected rays but to evaluate the phenomenon, a high level of detail is necessary, requiring on-field analysis. The analysis methodology distinguishes between two types of sources: solar reflection on surfaces and direct sunlight. Other variables analyzed are the time of day, the size of the light source, the condition of the observer, whether on foot or in a car, and the angle of incidence of the source relative to the field of view. Specific instrumentation is formed for detecting the phenomenon and perceiving discomfort, distinguishing the subjective response from the physiological response defined by pupillary movement, recorded with an eye-tracking instrument. The results show that glare from solar reflection causes discomfort comparable to direct sunlight. There are no significant differences between glare at dawn and dusk. An entire reflective facade is similar to the solar reflection from a single window. In reality, however, reflections from windows tend to be shorter and less impactful. Discomfort strongly depends on the viewing angle of the light source and the difference in illuminance between two consecutive scenes. Discomfort is greatest when the light source is within 30° of the direction of gaze, while it decreases as the angle increases. Finally, variations in illuminance greater than 60% between consecutive scenes significantly increase the probability of visual discomfort, while differences below 30% are found to be less bothersome to the eyes. These results underscore the importance of regulating facade reflectance and suggest the adoption of glare mitigation strategies in outdoor environments.
I materiali di facciata nell’ambiente costruito possiedono un indice di riflettanza solare legato alle loro proprietà fisiche. Le moderne tecnologie hanno ampliato la scelta dei materiali, sia trasparenti che opachi, privilegiando soluzioni capaci di ridurre la penetrazione della radiazione solare all’interno degli edifici. Tuttavia, materiali come metalli, vetri a bassa emissività e vetri ad alta riflettanza, pur limitando il guadagno termico interno, riflettono la radiazione solare verso l’ambiente esterno, causando potenziali disagi visivi e termici. Già molti paesi hanno aggiornato i loro regolamenti edilizi limitando la riflettanza solare, mentre in Italia il problema non è ancora regolamentato. Ricerche condotte sugli incidenti stradali negli Stati Uniti dimostrano che l’abbagliamento da riflessione solare sia una causa di distrazione alla guida quasi al pari del cellulare. Questa tesi propone un framework per la rilevazione del problema in ambiente urbano, lavorando on-site. La parte simulativa può individuare i luoghi di esposizione maggiore ai raggi riflessi ma per valutare il fenomeno, il livello di dettaglio è molto alto, perciò è necessaria un’analisi sul campo. La metodologia di analisi distingue due tipi di sorgente: il riflesso solare sulle superfici e la luce diretta del Sole. Le altre variabili analizzate sono il periodo della giornata, la dimensione della sorgente luminosa, la condizione dell’osservatore, a piedi o in macchina, e l’angolo di incidenza della sorgente rispetto al campo visivo. Viene formata una strumentazione specifica per l’individuazione del fenomeno e la percezione del discomfort, distinguendo la risposta soggettiva da quella fisiologica definita dal movimento pupillare, registrato con uno strumento eye tracking. I risultati mostrano che l’abbagliamento da riflessione solare provoca un discomfort comparabile a quello del Sole diretto. Non emergono differenze significative tra l’abbagliamento all’alba e al tramonto. Un’intera facciata riflettente risulta simile rispetto alla riflessione solare da una singola finestra. Nella realtà però, generalmente le riflessioni da finestre tendono a essere più brevi e meno impattanti. Il discomfort dipende fortemente dall’angolo di vista della sorgente luminosa e dalla differenza di illuminamento tra due scene consecutive. Il discomfort è massimo quando la sorgente luminosa si trova entro i 30° rispetto alla direzione dello sguardo, mentre diminuisce all’aumentare dell’angolo. Infine, variazioni di illuminamento superiori al 60% tra scene consecutive aumentano significativamente la probabilità di discomfort visivo, mentre differenze sotto il 30% risultano essere poco fastidiose alla vista. Questi risultati sottolineano l’importanza di regolamentare la riflettanza delle facciate e suggeriscono l’adozione di strategie di mitigazione dell’abbagliamento in outdoor.
Analisi multi-scala dell'abbagliamento nell'ambiente costruito : sviluppo di un framework per la valutazione del discomfort visivo e della sicurezza basto su eye tracking
GAIDANO, NICCOLO'
2023/2024
Abstract
Facade materials in the built environment possess a solar reflectance index related to their physical properties. Modern technologies have expanded the choice of materials, both transparent and opaque, favoring solutions capable of reducing the penetration of solar radiation inside buildings. However, materials such as metals, low-emissivity glass, and high-reflectance glass, while limiting internal heat gain, reflect solar radiation toward the external environment, causing potential visual and thermal discomfort. Many countries have already updated their building regulations limiting solar reflectance, while in Italy the problem is not yet regulated. Research conducted on road accidents in the United States shows that glare from solar reflection is a cause of driver distraction almost on par with cell phones. This thesis proposes a framework for detecting the problem in urban environments, working on-site. The simulation part can identify areas of greater exposure to reflected rays but to evaluate the phenomenon, a high level of detail is necessary, requiring on-field analysis. The analysis methodology distinguishes between two types of sources: solar reflection on surfaces and direct sunlight. Other variables analyzed are the time of day, the size of the light source, the condition of the observer, whether on foot or in a car, and the angle of incidence of the source relative to the field of view. Specific instrumentation is formed for detecting the phenomenon and perceiving discomfort, distinguishing the subjective response from the physiological response defined by pupillary movement, recorded with an eye-tracking instrument. The results show that glare from solar reflection causes discomfort comparable to direct sunlight. There are no significant differences between glare at dawn and dusk. An entire reflective facade is similar to the solar reflection from a single window. In reality, however, reflections from windows tend to be shorter and less impactful. Discomfort strongly depends on the viewing angle of the light source and the difference in illuminance between two consecutive scenes. Discomfort is greatest when the light source is within 30° of the direction of gaze, while it decreases as the angle increases. Finally, variations in illuminance greater than 60% between consecutive scenes significantly increase the probability of visual discomfort, while differences below 30% are found to be less bothersome to the eyes. These results underscore the importance of regulating facade reflectance and suggest the adoption of glare mitigation strategies in outdoor environments.File | Dimensione | Formato | |
---|---|---|---|
2025_04_Gaidano.pdf
accessibile in internet solo dagli utenti autorizzati
Dimensione
10.06 MB
Formato
Adobe PDF
|
10.06 MB | Adobe PDF | Visualizza/Apri |
I documenti in POLITesi sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.
https://hdl.handle.net/10589/234387