The elaboration of appropriate models, to investigate the non-linear aeroelastic behaviour of very flexible structures, has become, in the last century, a source of great interest. The determination of the nature of such complex phenomena manifesting, such as limit cycle oscillations (LCOs), contemporary containing the computational costs of the needed sim- ulations, thus obtaining results in an acceptable time, constitutes a huge challenge. With the aim of validating such numerical methodologies, assessing their limits and capabili- ties, a wing deforming up to the 50% of its span, was designed and built. This lifting surface, named Pazy Wing, experienced during the wind tunnel testing campaign limit cycles oscillations, as well as soft and hard flutter. The objective of the present thesis, other than characterizing the aeroelastic behaviour of the PazyWing, is to address the nature of the LCOs, through an investigation based on a low order non linear structural model, coupled with different potential aerodynamic methods. In particular, the study accounted for the strip theory, with and without a tip loss correction model, for the Panel Method and for the Vortex Lattice Method with and without non-linear corrections. Once proved good coherence, among the results obtained by both time-marching and frequency-domain simulations and the experimental data, through a comparative analysis of such numerical outcomes, it was possible to assess that limit cycle oscillations, could be detected both using the VLM, either with and without the non linear correction, and the PM. This led to the conclusion that LCOs depend on non linear structural effects, but not on non-linear aerodynamic ones. Moreover, by inves- tigating the amplitude of such oscillations, it was possible to assess that 3D aerodynamics plays a major role in such estimate, given the accordance manifested among the Panel Method model results and the wind tunnel tests gathered data, while the VLM in both forms showed an underprediction of their severity. In the end, as a starting point for a future development of the present work, the set up for an FSI CFD simulation was generated, by means of preliminary studies.
L’elaborazione di modelli appropriati, per lo studio del comportamento aeroelastico non lineare di strutture altamente flessibili, è diventato, nell’ultimo secolo, fonte di grande interesse. Determinare la natura di fenomeni così complessi, come le oscillazioni a ciclo limite (LCOs), contenendo contemporaneamente i costi computazionali delle simulazioni necessarie, ottenendo così dei risultati in tempi accettabili, costituisce una grande sfida. Con lo scopo di validare queste metodologie numeriche, valutando i loro limiti e le loro capacità, è stata progettata e costruita un’ala deformantesi fino al 50% della sua aper- tura. Questa superficie portante, denominata Pazy Wing, ha sperimentato, durante la campagna di prove in galleria del vento, dei cicli limite, insieme a "soft" e "hard flutter". L’obiettivo della presente tesi, aldilà del caratterizzare il comportamento aeroelastico della Pazy Wing, è quello di individuare la natura delle LCOs attraverso un’investigazione basata su un modello strutturale di "basso ordine", accoppiato con metodi aerodinamici a potenziale. In particolare, lo studio si è basato sulla teoria delle strisce, con e senza modello di correzione per le perdite di carico alle estremità, sul metodo a pannelli e sul metodo a reticolo di vortici con e senza correzione non lineare. Una volta provata co- erenza tra i risultati numerici ottenuti, sia attraverso le analisi nel dominio del tempo sia in quello delle frequenze, con i dati sperimentali, sfruttando un’analisi comparativa di questi ultimi, è stato possibile asserire che i cicli limite potevano essere individuati sia usando il VLM, con e senza correzione non lineare, sia attraverso il PM. Questo ha portato a concludere che le LCOs, dipendono da non linearità strutturali, ma non da non linearità aerodinamiche. Per di più, investigando l’ampiezza delle suddette oscillazioni, è stato possibile asserire che gli effetti aerodinamici 3D giocano un ruolo fondamentale in questa stima, dato l’accordo manifestato tra i risultati del PM e i dati raccolti nei test sperimentali, mentre il VLM in entrambe le sue forme ha mostrato una sottostima della loro severità. Infine, come punto di partenza per degli sviluppi futuri del presente lavoro, il set-up per una simulazione FSI basata sulla CFD è stato creato, attraverso degli studi preliminari.
Mid-fidelity approaches for the non-linear aeroelastic assessment of the Pazy Wing
Bove, Alessia
2023/2024
Abstract
The elaboration of appropriate models, to investigate the non-linear aeroelastic behaviour of very flexible structures, has become, in the last century, a source of great interest. The determination of the nature of such complex phenomena manifesting, such as limit cycle oscillations (LCOs), contemporary containing the computational costs of the needed sim- ulations, thus obtaining results in an acceptable time, constitutes a huge challenge. With the aim of validating such numerical methodologies, assessing their limits and capabili- ties, a wing deforming up to the 50% of its span, was designed and built. This lifting surface, named Pazy Wing, experienced during the wind tunnel testing campaign limit cycles oscillations, as well as soft and hard flutter. The objective of the present thesis, other than characterizing the aeroelastic behaviour of the PazyWing, is to address the nature of the LCOs, through an investigation based on a low order non linear structural model, coupled with different potential aerodynamic methods. In particular, the study accounted for the strip theory, with and without a tip loss correction model, for the Panel Method and for the Vortex Lattice Method with and without non-linear corrections. Once proved good coherence, among the results obtained by both time-marching and frequency-domain simulations and the experimental data, through a comparative analysis of such numerical outcomes, it was possible to assess that limit cycle oscillations, could be detected both using the VLM, either with and without the non linear correction, and the PM. This led to the conclusion that LCOs depend on non linear structural effects, but not on non-linear aerodynamic ones. Moreover, by inves- tigating the amplitude of such oscillations, it was possible to assess that 3D aerodynamics plays a major role in such estimate, given the accordance manifested among the Panel Method model results and the wind tunnel tests gathered data, while the VLM in both forms showed an underprediction of their severity. In the end, as a starting point for a future development of the present work, the set up for an FSI CFD simulation was generated, by means of preliminary studies.File | Dimensione | Formato | |
---|---|---|---|
2025_04_Bove_Tesi.pdf
accessibile in internet solo dagli utenti autorizzati
Dimensione
22.08 MB
Formato
Adobe PDF
|
22.08 MB | Adobe PDF | Visualizza/Apri |
2025_04_Bove_ExecutiveSummary.pdf
accessibile in internet solo dagli utenti autorizzati
Dimensione
1.12 MB
Formato
Adobe PDF
|
1.12 MB | Adobe PDF | Visualizza/Apri |
I documenti in POLITesi sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.
https://hdl.handle.net/10589/234444