Computational Fluid Dynamics (CFD) is a well-established tool in both research and industry and CFD optimization workflows support the aerodynamic development pro cess, reducing costs while improving performance in an automated manner. This thesis presents the development of an automated workflow for optimizing multi-element wing sections in incompressible turbulent flows using the continuous adjoint method. The aero dynamic shape optimization (ASO) framework is implemented in MATLAB. For each step of the optimization loop, the workflow manipulates geometries described by the Class Shape Function Transformation (CST) parametrization, automatically generates meshes in the ANSA Beta CAE software, solves the primal and the adjoint problems in Open FOAM and updates the design variables based on the computed sensitivity derivatives (SDs). Both constrained and unconstrained lift maximization are performed for a NACA 0012 airfoil, while unconstrained downforce optimization is conducted for a generic multi element airfoil. The optimized shape of the multi-element wing section is evaluated in a three-dimensional (3D) case by extruding the geometry to generate a wing, which is then integrated into the rear of a generic GT-class car model. The search for the optimum is driven either by the steepest descent method or the Sequential Quadratic Programming algorithm (SQP). Results demonstrate that the proposed workflow effectively handles complex geometries, successfully optimizes two-dimensional (2D) configurations, and maintains consistency when extended to three-dimensional (3D) applications. This fast and reliable 2D approach is able to lead to significant performance improvements and its applications to confidential geometries for TOYOTA GAZOO Racing Europe highlights its potential and suitability for further development. Additionally, the Flatland simulation tool is developed using the same methodology: it enables accurate investigations of 2D geometries in turbulent flows, proving valuable in the early stages of car design.
La FluidoDinamica Computazionale (CFD) è uno strumento consolidato sia nella ricerca che nell’industria, e i workflow di ottimizzazione CFD supportano il processo di sviluppo aerodinamico, riducendo i costi e migliorando le prestazioni in modo automatizzato. Questa tesi presenta lo sviluppo di un workflow automatizzato per l’ottimizzazione di sezioni alari multi-elemento in flussi turbolenti incomprimibili, utilizzando il metodo dell’aggiunto continuo. Il framework per l’ottimizzazione della forma aerodinamica (ASO) è implementato in MATLAB. Ad ogni iterazione del ciclo di ottimizzazione, il workflow modifica le geometrie descritte dalla parametrizzazione Class-Shape Function Transformation (CST), genera automaticamente le mesh nel software ANSA Beta CAE, risolve i problemi primale e aggiunto in OpenFOAM e aggiorna le variabili di progetto sulla base delle derivate di sensibilità (SDs) calcolate. L’ottimizzazione della portanza viene eseguita sia in forma vincolata che non vincolata per un profilo NACA 0012, mentre l’ottimizzazione non vincolata della deportanza è condotta per un profilo multi-elemento generico. La forma ottimizzata della sezione alare multi-elemento viene valutata in un caso tridimensionale (3D), estrudendo la geometria per generare un’ala, che viene poi integrata nella parte posteriore di un modello generico di auto GT. La ricerca della con figurazione ottimale può essere guidata sia dal metodo steepest descent che dall’algoritmo Sequential Quadratic Programming (SQP). I risultati dimostrano che il workflow proposto gestisce efficacemente geometrie complesse, ottimizza con successo configurazioni bidimensionali e garantisce coerenza quando esteso alle applicazioni tridimensionali. Questo approccio 2D rapido e affidabile garantisce miglioramenti significativi delle prestazioni e le sue applicazioni alle geometrie riservate di TOYOTA GAZOO Racing Europe evidenziano il suo potenziale e la sua idoneità per ulteriori sviluppi. Inoltre, lo strumento di simulazione Flatland è stato sviluppato utilizzando la stessa metodologia: consente un’analisi accurata delle geometrie 2D in flussi turbolenti e si è dimostrato utile durante il processo di progettazione iniziale.
Development of an automated workflow for CFD optimization of multi-element wing profiles in turbulent flows using the continuous adjoint method
Cozzolino, Chiara
2024/2025
Abstract
Computational Fluid Dynamics (CFD) is a well-established tool in both research and industry and CFD optimization workflows support the aerodynamic development pro cess, reducing costs while improving performance in an automated manner. This thesis presents the development of an automated workflow for optimizing multi-element wing sections in incompressible turbulent flows using the continuous adjoint method. The aero dynamic shape optimization (ASO) framework is implemented in MATLAB. For each step of the optimization loop, the workflow manipulates geometries described by the Class Shape Function Transformation (CST) parametrization, automatically generates meshes in the ANSA Beta CAE software, solves the primal and the adjoint problems in Open FOAM and updates the design variables based on the computed sensitivity derivatives (SDs). Both constrained and unconstrained lift maximization are performed for a NACA 0012 airfoil, while unconstrained downforce optimization is conducted for a generic multi element airfoil. The optimized shape of the multi-element wing section is evaluated in a three-dimensional (3D) case by extruding the geometry to generate a wing, which is then integrated into the rear of a generic GT-class car model. The search for the optimum is driven either by the steepest descent method or the Sequential Quadratic Programming algorithm (SQP). Results demonstrate that the proposed workflow effectively handles complex geometries, successfully optimizes two-dimensional (2D) configurations, and maintains consistency when extended to three-dimensional (3D) applications. This fast and reliable 2D approach is able to lead to significant performance improvements and its applications to confidential geometries for TOYOTA GAZOO Racing Europe highlights its potential and suitability for further development. Additionally, the Flatland simulation tool is developed using the same methodology: it enables accurate investigations of 2D geometries in turbulent flows, proving valuable in the early stages of car design.File | Dimensione | Formato | |
---|---|---|---|
Tesi_Chiara_Cozzolino.pdf
accessibile in internet per tutti
Descrizione: Tesi
Dimensione
9.96 MB
Formato
Adobe PDF
|
9.96 MB | Adobe PDF | Visualizza/Apri |
Executive_Summary_Chiara_Cozzolino.pdf
accessibile in internet per tutti
Descrizione: Executive Summary
Dimensione
2.36 MB
Formato
Adobe PDF
|
2.36 MB | Adobe PDF | Visualizza/Apri |
I documenti in POLITesi sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.
https://hdl.handle.net/10589/234502