In the last two decades scientists have been highly interested in 2D materials due to their new properties and structures, which makes them key materials for future applications in nanotechnology. Transition metal dichalcogenides (TMDCs), in particular, are attracting significant interest due to their tunable chemical and magnetic properties. This thesis focuses specifically on a new TMDC which is predicted to have ferromagnetic properties at room temperature: MnS2. Up to now, no one has been able to synthesize the material by wet chemistry. The goal is to verify if this material can be synthesized by using reactive molecular beam epitaxy (r-MBE) and, in case, study its structural properties. The experiment, conducted at the European Synchrotron Radiation Facility (ESRF), consisted in synthesizing the MnS2 on a Au(111) surface. The sample was then studied with Auger Electron Spectroscopy (AES), Reflection High Energy Electron Diffraction (RHEED) and Surface X-ray Diffraction (SXRD). This last technique was used to explore the reciprocal space of the material. The obtained data was then analyzed, in order to determine the structure at the atomic scale by fitting the experimental data. The structural complexity required the development and implementation of a Fourier series expansion-based method for modelling the atomic displacements induced by the moiré patterns. The final results revealed interesting structural properties arising from a distortion, opening several possibilities for future research on both the material itself and the fitting approach.

Negli ultimi due decenni, i materiali bidimensionali hanno suscitato un forte interesse nella comunità scientifica grazie alle loro nuove proprietà e strutture, che li rendono materiali chiave per future applicazioni in nanotecnologia. In particolare, i dicalcogenuri di metalli di transizione (TMDC) stanno attirando un notevole interesse grazie alle loro proprietà chimiche e magnetiche modulabili. Questa tesi si concentra su un TMDC recentemente proposto, previsto teoricamente come ferromagnetico a temperatura ambiente: MnS2. Finora, il materiale non è stato sintetizzato con metodi di chimica in soluzione. L’obiettivo è verificare se possa essere sintetizzato utilizzando reactive molecular beam epitaxy (r-MBE) e, in tal caso, studiarne le proprietà strutturali. L’esperimento, condotto presso lo European Synchrotron Radiation Facility (ESRF), ha previsto la sintesi di MnS2 su una superficie di Au(111). Il campione è stato poi analizzato mediante Auger Electron Spectroscopy (AES), Reflection High Energy Electron Diffraction (RHEED) e Surface X-ray Diffraction (SXRD). Quest’ultima tecnica è stata utilizzata per esplorare lo spazio reciproco del materiale. I dati ottenuti sono stati analizzati per determinare la struttura su scala atomica attraverso il fitting dei dati sperimentali. La complessità strutturale ha richiesto lo sviluppo e l’implementazione di un metodo basato sull’espansione in serie di Fourier per modellare gli spostamenti atomici indotti dai pattern moiré. I risultati finali hanno rivelato proprietà strutturali di particolare interesse, derivanti da una distorsione, aprendo diverse prospettive per ricerche future sia sul materiale sia sull’approccio di fitting adottato.

Growth and characterization of a new 2D dichalcogenide

Albertini, Emanuele
2023/2024

Abstract

In the last two decades scientists have been highly interested in 2D materials due to their new properties and structures, which makes them key materials for future applications in nanotechnology. Transition metal dichalcogenides (TMDCs), in particular, are attracting significant interest due to their tunable chemical and magnetic properties. This thesis focuses specifically on a new TMDC which is predicted to have ferromagnetic properties at room temperature: MnS2. Up to now, no one has been able to synthesize the material by wet chemistry. The goal is to verify if this material can be synthesized by using reactive molecular beam epitaxy (r-MBE) and, in case, study its structural properties. The experiment, conducted at the European Synchrotron Radiation Facility (ESRF), consisted in synthesizing the MnS2 on a Au(111) surface. The sample was then studied with Auger Electron Spectroscopy (AES), Reflection High Energy Electron Diffraction (RHEED) and Surface X-ray Diffraction (SXRD). This last technique was used to explore the reciprocal space of the material. The obtained data was then analyzed, in order to determine the structure at the atomic scale by fitting the experimental data. The structural complexity required the development and implementation of a Fourier series expansion-based method for modelling the atomic displacements induced by the moiré patterns. The final results revealed interesting structural properties arising from a distortion, opening several possibilities for future research on both the material itself and the fitting approach.
PRABHU, Mahesh-Prabhu
RENAUD, GILLES
ING - Scuola di Ingegneria Industriale e dell'Informazione
3-apr-2025
2023/2024
Negli ultimi due decenni, i materiali bidimensionali hanno suscitato un forte interesse nella comunità scientifica grazie alle loro nuove proprietà e strutture, che li rendono materiali chiave per future applicazioni in nanotecnologia. In particolare, i dicalcogenuri di metalli di transizione (TMDC) stanno attirando un notevole interesse grazie alle loro proprietà chimiche e magnetiche modulabili. Questa tesi si concentra su un TMDC recentemente proposto, previsto teoricamente come ferromagnetico a temperatura ambiente: MnS2. Finora, il materiale non è stato sintetizzato con metodi di chimica in soluzione. L’obiettivo è verificare se possa essere sintetizzato utilizzando reactive molecular beam epitaxy (r-MBE) e, in tal caso, studiarne le proprietà strutturali. L’esperimento, condotto presso lo European Synchrotron Radiation Facility (ESRF), ha previsto la sintesi di MnS2 su una superficie di Au(111). Il campione è stato poi analizzato mediante Auger Electron Spectroscopy (AES), Reflection High Energy Electron Diffraction (RHEED) e Surface X-ray Diffraction (SXRD). Quest’ultima tecnica è stata utilizzata per esplorare lo spazio reciproco del materiale. I dati ottenuti sono stati analizzati per determinare la struttura su scala atomica attraverso il fitting dei dati sperimentali. La complessità strutturale ha richiesto lo sviluppo e l’implementazione di un metodo basato sull’espansione in serie di Fourier per modellare gli spostamenti atomici indotti dai pattern moiré. I risultati finali hanno rivelato proprietà strutturali di particolare interesse, derivanti da una distorsione, aprendo diverse prospettive per ricerche future sia sul materiale sia sull’approccio di fitting adottato.
File allegati
File Dimensione Formato  
2025_4_Albertini.pdf

accessibile in internet per tutti

Descrizione: Testo della tesi
Dimensione 40.88 MB
Formato Adobe PDF
40.88 MB Adobe PDF Visualizza/Apri
2025_4_Albertini_Executive Summary.pdf

accessibile in internet per tutti

Descrizione: Testo dell'executive summary
Dimensione 8.84 MB
Formato Adobe PDF
8.84 MB Adobe PDF Visualizza/Apri

I documenti in POLITesi sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/10589/234616