Tiltrotors represent a revolutionary advance in aviation, combining helicopter hover capabilities with the range and cruise speeds of fixed-wing aircraft. However, their distinctive configuration, with propellers mounted at the wing tips and the complex tilting mechanisms required, makes them particularly susceptible to aeroelastic instabilities. This work focuses on the aeroelastic analysis of a semi-span tiltrotor model developed under the Clean Sky 2 project, with particular emphasis on whirl flutter prediction exploiting multibody system dynamics simulations with both low- and mid-fidelity aerodynamics. The research was motivated by the dynamic behavior observed during wind tunnel testing, which revealed that the discrepancies from initial numerical predictions were largely affected by the tilt of the rotor with respect to the airflow. Two approaches were adopted in an attempt to obtain better correlation with experimental results. First, a mid-fidelity aerodynamic model based on the vortex particle method was implemented to enhance prediction accuracy. The VPM method allows modeling of the wake interaction between the rotor and the wing, capturing their effects on the dynamic response of the system. Secondly, friction in specific mechanical joints, whose presence was observed during experimental testing, was identified as the likely cause of the anomalous behavior. The friction analysis, conducted through both stochastic and deterministic methods, yielded promising results. By incorporating friction effects in specific joints, the model qualitatively reproduced key characteristics of the experimental dynamic response. This suggests that the complex interaction between friction, rotor tilt, and airspeed can significantly influence the system's aeroelastic stability boundaries. In particular, the results indicate that stiction-induced locking in the gimbal joint could explain the distinct responses observed between tilted and untilted rotor configurations.
I convertiplani rappresentano un progresso rivoluzionario nell'aviazione, combinando le capacità di hovering degli elicotteri con l'autonomia e la velocità di crociera degli aeromobili ad ala fissa. Tuttavia, la loro configurazione distintiva, con eliche montate alle estremità alari e i complessi meccanismi di inclinazione richiesti, li rende particolarmente suscettibili alle instabilità aeroelastiche. Questo lavoro si concentra sull'analisi aeroelastica di un modello semi-span di convertiplano sviluppato nell'ambito del progetto Clean Sky 2, con particolare enfasi sulla previsione del whirl flutter attraverso simulazioni di dinamica dei sistemi sfruttando modelli aerodinamici sia a bassa che a media fedeltà. La ricerca è stata motivata da un inatteso comportamento dinamico osservato durante i test in galleria del vento, che ha rivelato significative discrepanze rispetto alle previsioni numeriche iniziali, specialmente quando il rotore era inclinato rispetto al flusso d'aria. Sono stati adottati due approcci nel tentativo di ottenere una migliore correlazione con i risultati sperimentali. In primo luogo, è stato implementato un modello aerodinamico a media fedeltà basato sul metodo delle particelle vorticose (VPM) per migliorare l'accuratezza della previsione. Il metodo VPM permette di modellare l'interazione della scia tra il rotore e l'ala, catturando i loro effetti sulla risposta dinamica del sistema. In secondo luogo, l'attrito in specifici giunti meccanici, la cui presenza è stata osservata durante le prove sperimentali, è stato identificato come probabile causa del comportamento anomalo. L'analisi dell'attrito, condotta attraverso metodi sia stocastici che deterministici, ha prodotto risultati promettenti. I modelli con attrito hanno riprodotto qualitativamente le caratteristiche chiave della risposta dinamica sperimentale. Questo suggerisce che la complessa interazione tra attrito, inclinazione del rotore e velocità dell'aria può influenzare significativamente i limiti di stabilità aeroelastica. In particolare, i risultati indicano che il bloccaggio indotto dalla stiction nel gimbal potrebbe spiegare le distinte risposte osservate tra le configurazioni con rotore inclinato e non inclinato.
Tiltrotor whirl flutter with mid-fidelity aerodynamics and mechanical friction
De Vita, Paolo
2023/2024
Abstract
Tiltrotors represent a revolutionary advance in aviation, combining helicopter hover capabilities with the range and cruise speeds of fixed-wing aircraft. However, their distinctive configuration, with propellers mounted at the wing tips and the complex tilting mechanisms required, makes them particularly susceptible to aeroelastic instabilities. This work focuses on the aeroelastic analysis of a semi-span tiltrotor model developed under the Clean Sky 2 project, with particular emphasis on whirl flutter prediction exploiting multibody system dynamics simulations with both low- and mid-fidelity aerodynamics. The research was motivated by the dynamic behavior observed during wind tunnel testing, which revealed that the discrepancies from initial numerical predictions were largely affected by the tilt of the rotor with respect to the airflow. Two approaches were adopted in an attempt to obtain better correlation with experimental results. First, a mid-fidelity aerodynamic model based on the vortex particle method was implemented to enhance prediction accuracy. The VPM method allows modeling of the wake interaction between the rotor and the wing, capturing their effects on the dynamic response of the system. Secondly, friction in specific mechanical joints, whose presence was observed during experimental testing, was identified as the likely cause of the anomalous behavior. The friction analysis, conducted through both stochastic and deterministic methods, yielded promising results. By incorporating friction effects in specific joints, the model qualitatively reproduced key characteristics of the experimental dynamic response. This suggests that the complex interaction between friction, rotor tilt, and airspeed can significantly influence the system's aeroelastic stability boundaries. In particular, the results indicate that stiction-induced locking in the gimbal joint could explain the distinct responses observed between tilted and untilted rotor configurations.File | Dimensione | Formato | |
---|---|---|---|
Thesis_Paolo_de_Vita.pdf
non accessibile
Descrizione: Tesi
Dimensione
64.75 MB
Formato
Adobe PDF
|
64.75 MB | Adobe PDF | Visualizza/Apri |
Executive_summary_Paolo_de_Vita.pdf
non accessibile
Descrizione: Executive Summary
Dimensione
6.14 MB
Formato
Adobe PDF
|
6.14 MB | Adobe PDF | Visualizza/Apri |
I documenti in POLITesi sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.
https://hdl.handle.net/10589/234618