In the aeronautical field, the ditching of an aircraft is an event to consider in the design phase, with the aim of promoting increasingly safe air transport. This mission poses a series of difficulties related to the complexity of the phenomenon, that requires the performance of both real tests and numerical simulations, which are intrinsically laborious and computationally demanding. In this thesis, it is intended to provide a methodology for the study of helicopter ditching which can reduce computational time and act as a bridge between experimental tests, FE simulations, and the multibody approach. This last passage is represented by the use of MUSIAC software. The first part of the work is focused on the fluid-structure interaction that characterizes the impact of aeronautical panels at different angles and fall speeds. The study was carried out through experimental tests at the LaST of the Politecnico di Milano. The deceleration curves obtained were subsequently used to verify whether the contact law implemented in MUSIAC was suitable to model impacts on water. After its inadequacy was determined, the focus was placed on the von Karman model, which turned out to be eligible. In order to improve its accuracy, it was necessary to correct the model under study through exponential shape functions depending on the sinking depth. These semi-empirical corrections were deepened for three different fall angles. Subsequently, LS-DYNA simulations were used to study 5° falls, thus extending the cases that could also be explored in terms of impact speed. The results obtained from this second approach were integrated with the experimental tests, giving rise to a database defined for different angles (30°, 15°, 5°, 0°) and impact speeds (from 3 to 7 m/s). This database was used to obtain a further contact model at low angles. Furthermore, the transition of the contact logic between one law and the other was studied in detail on the basis of angular intervals and fall speeds. The study conducted finally allowed to define an algorithm to replace the original contact law and through which forces are applied on the fuselage panels of a helicopter model already available in MUSIAC.
Nel mondo aeronautico, l'ammaraggio di un velivolo è una eventualità da considerare in fase di progetto, con lo scopo di promuovere un trasporto aereo sempre più sicuro. Questa missione pone una serie di difficoltà legate alla complessità del fenomeno, che richiede l'effettuazione sia di prove al vero che di simulazioni numeriche, intrinsecamente laboriose e computazionalmente impegnative. In questa tesi si intende fornire una metodologia per lo studio dell'ammaraggio di elicotteri che riduca i tempi di calcolo e agisca da ponte tra prove sperimentali, simulazioni FE e approccio multicorpo. Quest'ultimo passaggio è rappresentato dall'uso del software MUSIAC. La prima parte del lavoro è focalizzata sull'interazione fluido-struttura caratterizzante l'impatto di pannelli aeronautici a diverse angolazioni e velocità di caduta. Lo studio è stato condotto attraverso test sperimentali presso il LaST del Politecnico di Milano. Le curve di decelerazione ottenute sono state successivamente utilizzate per verificare se la legge di contatto implementata in MUSIAC fosse adatta per modellare impatti su acqua. Dopo averne appurato l'inadeguatezza, l'attenzione è stata posta sul modello di von Karman, che è risultato essere idoneo. Per migliorarne l'accuratezza è emersa la necessità di correggere il modello in questione attraverso funzioni di forma esponenziali dipendenti dalla profondità di affondamento. Queste correzioni semi-empiriche sono state approfondite per tre diversi angoli di caduta. Successivamente, simulazioni LS-DYNA sono state impiegate per studiare cadute a 5°, ampliando così le casistiche esplorabili anche in termini di velocità di impatto. I risultati ottenuti da questo secondo approccio sono stati integrati con i test sperimentali, dando origine a un database definito per diverse angolazioni (30°, 15°, 5°, 0°) e velocità di impatto (da 3 a 7 m/s). Questo database è stato impiegato per la derivazione di un ulteriore modello di contatto a basse angolazioni. Inoltre, la transizione della logica di contatto tra una legge e l'altra è stata studiata in dettaglio sulla base di intervalli angolari e velocità di caduta. Lo studio condotto ha infine permesso di definire un algoritmo per sostituire la legge di contatto originale e attraverso il quale vengono applicate le forze sui pannelli della fusoliera di un modello di elicottero già sviluppato in ambiente MUSIAC.
Semi-empirical correction of von Karman's model for the study of helicopter ditching in a multibody framework
Paolini, Edoardo
2023/2024
Abstract
In the aeronautical field, the ditching of an aircraft is an event to consider in the design phase, with the aim of promoting increasingly safe air transport. This mission poses a series of difficulties related to the complexity of the phenomenon, that requires the performance of both real tests and numerical simulations, which are intrinsically laborious and computationally demanding. In this thesis, it is intended to provide a methodology for the study of helicopter ditching which can reduce computational time and act as a bridge between experimental tests, FE simulations, and the multibody approach. This last passage is represented by the use of MUSIAC software. The first part of the work is focused on the fluid-structure interaction that characterizes the impact of aeronautical panels at different angles and fall speeds. The study was carried out through experimental tests at the LaST of the Politecnico di Milano. The deceleration curves obtained were subsequently used to verify whether the contact law implemented in MUSIAC was suitable to model impacts on water. After its inadequacy was determined, the focus was placed on the von Karman model, which turned out to be eligible. In order to improve its accuracy, it was necessary to correct the model under study through exponential shape functions depending on the sinking depth. These semi-empirical corrections were deepened for three different fall angles. Subsequently, LS-DYNA simulations were used to study 5° falls, thus extending the cases that could also be explored in terms of impact speed. The results obtained from this second approach were integrated with the experimental tests, giving rise to a database defined for different angles (30°, 15°, 5°, 0°) and impact speeds (from 3 to 7 m/s). This database was used to obtain a further contact model at low angles. Furthermore, the transition of the contact logic between one law and the other was studied in detail on the basis of angular intervals and fall speeds. The study conducted finally allowed to define an algorithm to replace the original contact law and through which forces are applied on the fuselage panels of a helicopter model already available in MUSIAC.File | Dimensione | Formato | |
---|---|---|---|
2025_04_Paolini_tesi.pdf
accessibile in internet per tutti
Dimensione
59.52 MB
Formato
Adobe PDF
|
59.52 MB | Adobe PDF | Visualizza/Apri |
2025_04_Paolini_executive_summary.pdf
accessibile in internet per tutti
Dimensione
4.91 MB
Formato
Adobe PDF
|
4.91 MB | Adobe PDF | Visualizza/Apri |
I documenti in POLITesi sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.
https://hdl.handle.net/10589/234626