Heart Rate Variability (HRV) is an important biomarker for evaluating autonomic nervous system function and overall physiological health. Its broad applicability spans cardiology, neurology, and preventive medicine, making it an essential tool for both clinical diagnostics and continuous health monitoring. This research presents a comprehensive evaluation of the HRV through a novel measurement device, systematically comparing its performance against a widely adopted and clinically validated model. Conducted within the framework of an internship at Capsula S.r.l., this study employs a multi-faceted validation approach encompassing technical, clinical, and regulatory perspectives. The device’s accuracy, precision, and signal integrity were assessed through controlled experiments, leveraging standardized metrics such as measurement stability, repeatability, and correlation with gold-standard methodologies. The results demonstrate that the novel device exhibits measurement fidelity within clinically acceptable margins. Notably, improvements in data acquisition efficiency, and integration capabilities were identified, underscoring its potential for seamless incorporation into existing infrastructures. Furthermore, the study highlights the device’s compliance with General Data Protection Regulation (GDPR) standards, ensuring robust data security and patient confidentiality. Additionally, the device complies with the Medical Device Regulation (MDR 2017/745), meeting safety, performance, and risk management requirements for CE marking. Its documentation is structured for inclusion in the technical file, supporting regulatory approval. Beyond technical validation, this research contributes to the broader discussion on biomedical engineering by illustrating how innovative HRV monitoring solutions can enhance preventive healthcare, enable real-time physiological assessments, and facilitate personalized medicine. By providing empirical evidence through a rigorous validation framework, this study serves as a reference for future advancements in HRV based diagnostics. It lays the groundwork for subsequent refinements in health technologies, advocating for the integration of more precise, reliable, and user-centric biomedical innovations within modern healthcare ecosystems.

La Variabilità della Frequenza Cardiaca (HRV) è un biomarcatore importante per valutare la funzione del sistema nervoso autonomo e lo stato fisiologico generale. La sua ampia applicabilità si estende alla cardiologia, neurologia e medicina preventiva, rendendola uno strumento essenziale sia per la diagnostica clinica che per il monitoraggio continuo della salute. Questa ricerca presenta una valutazione completa dell’HRV attraverso un nuovo dispositivo di misurazione, confrontandone sistematicamente le prestazioni con un modello ampiamente adottato e clinicamente validato. Condotto nell’ambito di un tirocinio presso Capsula S.r.l., questo studio adotta un approccio di validazione multifattoriale che comprende aspetti tecnici, clinici e normativi. L’accuratezza, la precisione e l’integrità del segnale del dispositivo sono state valutate attraverso esperimenti controllati, utilizzando metriche standardizzate come la stabilità della misurazione, la ripetibilità e la correlazione con metodologie di riferimento. I risultati dimostrano che il nuovo dispositivo garantisce una fedeltà di misurazione entro margini clinicamente accettabili. Sono stati inoltre identificati miglioramenti nell’efficienza dell’acquisizione dei dati e nelle capacità di integrazione, evidenziandone il potenziale per un’incorporazione fluida nelle infrastrutture esistenti. Inoltre, lo studio sottolinea la conformità del dispositivo al Regolamento Generale sulla Protezione dei Dati (GDPR), assicurando elevata sicurezza dei dati e riservatezza del paziente. In aggiunta, il dispositivo è conforme al Regolamento sui Dispositivi Medici (MDR 2017/745), soddisfacendo i requisiti di sicurezza, prestazioni e gestione del rischio per ottenere la marcatura CE. La documentazione è strutturata per l’inclusione nel fascicolo tecnico, a supporto dell’approvazione normativa. Oltre alla validazione tecnica, questa ricerca contribuisce al più ampio dibattito sull’ingegneria biomedica, illustrando come soluzioni innovative per il monitoraggio dell’HRV possano migliorare la prevenzione sanitaria, consentire valutazioni fisiologiche in tempo reale e facilitare la medicina personalizzata. Fornendo evidenze empiriche attraverso un rigoroso framework di validazione, questo studio rappresenta un riferimento per i futuri sviluppi nella diagnostica basata sull’HRV. Getta le basi per successivi perfezionamenti nelle tecnologie sanitarie, promuovendo l’integrazione di innovazioni biomediche più precise, affidabili e orientate all’utente nei moderni ecosistemi sanitari.

Validation of a novel heart rate variability measurement device, MDR 745/2017 and GDPR compliance

Deangelis, Giacomo
2024/2025

Abstract

Heart Rate Variability (HRV) is an important biomarker for evaluating autonomic nervous system function and overall physiological health. Its broad applicability spans cardiology, neurology, and preventive medicine, making it an essential tool for both clinical diagnostics and continuous health monitoring. This research presents a comprehensive evaluation of the HRV through a novel measurement device, systematically comparing its performance against a widely adopted and clinically validated model. Conducted within the framework of an internship at Capsula S.r.l., this study employs a multi-faceted validation approach encompassing technical, clinical, and regulatory perspectives. The device’s accuracy, precision, and signal integrity were assessed through controlled experiments, leveraging standardized metrics such as measurement stability, repeatability, and correlation with gold-standard methodologies. The results demonstrate that the novel device exhibits measurement fidelity within clinically acceptable margins. Notably, improvements in data acquisition efficiency, and integration capabilities were identified, underscoring its potential for seamless incorporation into existing infrastructures. Furthermore, the study highlights the device’s compliance with General Data Protection Regulation (GDPR) standards, ensuring robust data security and patient confidentiality. Additionally, the device complies with the Medical Device Regulation (MDR 2017/745), meeting safety, performance, and risk management requirements for CE marking. Its documentation is structured for inclusion in the technical file, supporting regulatory approval. Beyond technical validation, this research contributes to the broader discussion on biomedical engineering by illustrating how innovative HRV monitoring solutions can enhance preventive healthcare, enable real-time physiological assessments, and facilitate personalized medicine. By providing empirical evidence through a rigorous validation framework, this study serves as a reference for future advancements in HRV based diagnostics. It lays the groundwork for subsequent refinements in health technologies, advocating for the integration of more precise, reliable, and user-centric biomedical innovations within modern healthcare ecosystems.
NIZARDO CHAILLY, ALESSANDRO
ING - Scuola di Ingegneria Industriale e dell'Informazione
3-apr-2025
2024/2025
La Variabilità della Frequenza Cardiaca (HRV) è un biomarcatore importante per valutare la funzione del sistema nervoso autonomo e lo stato fisiologico generale. La sua ampia applicabilità si estende alla cardiologia, neurologia e medicina preventiva, rendendola uno strumento essenziale sia per la diagnostica clinica che per il monitoraggio continuo della salute. Questa ricerca presenta una valutazione completa dell’HRV attraverso un nuovo dispositivo di misurazione, confrontandone sistematicamente le prestazioni con un modello ampiamente adottato e clinicamente validato. Condotto nell’ambito di un tirocinio presso Capsula S.r.l., questo studio adotta un approccio di validazione multifattoriale che comprende aspetti tecnici, clinici e normativi. L’accuratezza, la precisione e l’integrità del segnale del dispositivo sono state valutate attraverso esperimenti controllati, utilizzando metriche standardizzate come la stabilità della misurazione, la ripetibilità e la correlazione con metodologie di riferimento. I risultati dimostrano che il nuovo dispositivo garantisce una fedeltà di misurazione entro margini clinicamente accettabili. Sono stati inoltre identificati miglioramenti nell’efficienza dell’acquisizione dei dati e nelle capacità di integrazione, evidenziandone il potenziale per un’incorporazione fluida nelle infrastrutture esistenti. Inoltre, lo studio sottolinea la conformità del dispositivo al Regolamento Generale sulla Protezione dei Dati (GDPR), assicurando elevata sicurezza dei dati e riservatezza del paziente. In aggiunta, il dispositivo è conforme al Regolamento sui Dispositivi Medici (MDR 2017/745), soddisfacendo i requisiti di sicurezza, prestazioni e gestione del rischio per ottenere la marcatura CE. La documentazione è strutturata per l’inclusione nel fascicolo tecnico, a supporto dell’approvazione normativa. Oltre alla validazione tecnica, questa ricerca contribuisce al più ampio dibattito sull’ingegneria biomedica, illustrando come soluzioni innovative per il monitoraggio dell’HRV possano migliorare la prevenzione sanitaria, consentire valutazioni fisiologiche in tempo reale e facilitare la medicina personalizzata. Fornendo evidenze empiriche attraverso un rigoroso framework di validazione, questo studio rappresenta un riferimento per i futuri sviluppi nella diagnostica basata sull’HRV. Getta le basi per successivi perfezionamenti nelle tecnologie sanitarie, promuovendo l’integrazione di innovazioni biomediche più precise, affidabili e orientate all’utente nei moderni ecosistemi sanitari.
File allegati
File Dimensione Formato  
2025_04_Deangelis_Tesi.pdf

accessibile in internet per tutti

Descrizione: Tesi
Dimensione 5.48 MB
Formato Adobe PDF
5.48 MB Adobe PDF Visualizza/Apri
2025_04_Deangelis_Executive Summary.pdf

non accessibile

Descrizione: executive summary
Dimensione 1.37 MB
Formato Adobe PDF
1.37 MB Adobe PDF   Visualizza/Apri

I documenti in POLITesi sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/10589/234635