Due to their specifically designed structure, acoustic metamaterials possess extraordinary mechanical and acoustic properties. Hence, they are widely used in many applications, including wave guiding and cloaking. However, the main difficulty of acoustic metamaterials lies in their fabrication. A solution is offered by investment casting assisted by 3D printing. In fact, this alternative combines the free design of 3D printing with the good surface quality and solid construction achieved with the investment casting technique. This work focuses primarily on the production of a 2D acoustic lens. Its microstructure is made of unitary cells and is designed to manipulate the density and the bulk modulus locally. The process involves the three-dimensional modelling of geometries and the manufacturing of materials with means of investment casting assisted by 3D printing. Indeed, this procedure begins with the design of the metamaterial, followed by 3D printing using stereolithography. After that, the casting tree is constructed, and the negative mold is created in plaster. Finally, the aluminum casting is performed, resulting in the final product. Post processing operations are required to remove the plaster from the aluminum specimens. Therefore, regarding the manufacturing process, the work concludes with tuning the casting parameters to minimize fabrication defects as much as possible. As a result, following several casting processes, the products have been manufactured successfully. Although the specimens produced show promising results, further refinement is still needed, as some defects are still present.
Grazie alla loro struttura specificamente progettata, i metamateriali acustici possiedono straordinarie proprietà meccaniche e acustiche. Pertanto, sono ampiamente utilizzati in molte applicazioni, tra cui la guida d'onda e l’occultamento. Tuttavia, la principale difficoltà dei metamateriali acustici risiede nella loro fabbricazione. Una soluzione è offerta dalla fusione a cera persa assistita dalla stampa 3D. Infatti, questa alternativa combina la progettazione libera della stampa 3D con la buona qualità superficiale e del pieno ottenuta con la tecnica della fusione a cera persa. Questo lavoro si concentra principalmente sulla produzione di una lente acustica 2D. La sua microstruttura è composta da celle unitarie ed è progettata per manipolare localmente la densità e il modulo di comprimibilità. Il processo prevede la modellazione tridimensionale delle geometrie e la produzione di materiali con mezzi di fusione a cera persa assistiti dalla stampa 3D. Infatti, questa procedura inizia con la progettazione del metamateriale, seguita dalla stampa 3D mediante stereolitografia. Dopodiché, viene costruito l'albero di fusione e viene creato lo stampo negativo in gesso. Infine, viene eseguita la fusione di alluminio, che porta al prodotto finale. Sono necessarie operazioni di post-elaborazione per rimuovere il gesso dai campioni di alluminio. Pertanto, per quanto riguarda il processo di fabbricazione, il lavoro si conclude con la messa a punto dei parametri di fusione per ridurre al minimo i difetti di fabbricazione. Infine, dopo diversi processi di fusione, i prodotti sono stati fabbricati con successo. Sebbene i campioni prodotti mostrino risultati promettenti, sono ancora necessari ulteriori miglioramenti, poiché alcuni difetti sono ancora presenti.
Production of acoustic metamaterials by investment casting
MARASCO, DAVIDE
2024/2025
Abstract
Due to their specifically designed structure, acoustic metamaterials possess extraordinary mechanical and acoustic properties. Hence, they are widely used in many applications, including wave guiding and cloaking. However, the main difficulty of acoustic metamaterials lies in their fabrication. A solution is offered by investment casting assisted by 3D printing. In fact, this alternative combines the free design of 3D printing with the good surface quality and solid construction achieved with the investment casting technique. This work focuses primarily on the production of a 2D acoustic lens. Its microstructure is made of unitary cells and is designed to manipulate the density and the bulk modulus locally. The process involves the three-dimensional modelling of geometries and the manufacturing of materials with means of investment casting assisted by 3D printing. Indeed, this procedure begins with the design of the metamaterial, followed by 3D printing using stereolithography. After that, the casting tree is constructed, and the negative mold is created in plaster. Finally, the aluminum casting is performed, resulting in the final product. Post processing operations are required to remove the plaster from the aluminum specimens. Therefore, regarding the manufacturing process, the work concludes with tuning the casting parameters to minimize fabrication defects as much as possible. As a result, following several casting processes, the products have been manufactured successfully. Although the specimens produced show promising results, further refinement is still needed, as some defects are still present.File | Dimensione | Formato | |
---|---|---|---|
2025_04_Marasco.pdf
non accessibile
Descrizione: Thesis Davide Marasco
Dimensione
3.92 MB
Formato
Adobe PDF
|
3.92 MB | Adobe PDF | Visualizza/Apri |
I documenti in POLITesi sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.
https://hdl.handle.net/10589/234637