The integration of eVTOLs into the urban airspace presents major certification challenges, as strict safety and performance standards must be adhered to. Ground and flight testing procedures are indeed highly complex and time consuming, and may involve considerable risks. In response to these challenges, Simulation emerges as a pivotal tool for compliance demonstration, as reinforced by the Rotorcraft Certification by Simulation (RoCS) Programme. In this scenario, objective of present thesis is to perform a Certification-by-Simulation (CbS) exercise of EASA SC VTOL Handling and Flying Qualities rules for the low-speed regime HQs of a small-scale eVTOL. The work, based on RoCS guidelines, develops along two complementary phases. In the first part the Predicted dimension of HQs (pHQs) is explored: here the research focuses on addressing the main sources of uncertainty and to quantify their impact on the prediction of the Flight Simulation Model (FSM), in support to the Validation and Credibility Assessment Phases. To do so, the proposed methodology integrates the statistical simulation tool Dakota with the FSM: uncertainty ranges are assigned to key input factors identified as critical to model fidelity and systematically propagated through the FSM to assess their impact on the pHQs metrics. A hybrid Sensitivity Analysis/Uncertainty Quantification framework, combining the Morris One-at-a-Time method with Variance-Based Decomposition - using a Kriging meta-model for efficiency - is implemented. After the UA, the focus shifts to the Assigned HQ dimension: following EASA Modified Handling Qualities Rating Method and EUROCAE ED-295 guidelines, specific Flight Test Manoeuvres are performed, both in the Normal and Operational Flight Envelopes, collecting evidence on vehicle's HQs to ensure that sufficient workload capacity is available to the pilot to complete the tasks safely. This work ultimately demonstrates how to implement a robust Uncertainty Analysis framework, contributing to the widespread use of simulation to support informed decision-making in certification.
L'integrazione degli eVTOL nello spazio aereo urbano presenta sfide certificative importanti a causa degli standard rigorosi, in termini di sicurezza e prestazioni, che è necessario soddisfare. La sperimentazione, sia a terra che in volo, è infatti altamente complessa e dispendiosa in termini di tempo e può comportare rischi significativi. In risposta a tali sfide, la simulazione emerge come strumento fondamentale per la dimostrazione di conformità, come rafforzato dal programma Rotorcraft Certification by Simulation (RoCS). In questo contesto, la tesi si prefigge l'obiettivo di condurre un esercizio di Certificazione tramite Simulazione (CbS) delle norme EASA SC VTOL, relative alle Handling e Flying Qualities per il regime di bassa velocità di un eVTOL in scala ridotta. Il lavoro, basato sulle linee guida di RoCS, si sviluppa su due livelli complementari. Nella prima parte la dimensione Predittiva delle HQs (pHQ) è esplorata: la ricerca si concentra sull'identificazione delle principali fonti di incertezza e sulla quantificazione del loro impatto sulla predizione del Modello di Simulazione di Volo (FSM), a supporto delle fasi di Validazione e Valutazione della Credibilità. A tal fine, la metodologia proposta integra il software di analisi statistica Dakota con il FSM: intervalli di incertezza sono assegnati ai principali fattori di input identificati come critici per la fedeltà del modello e propagati sistematicamente attraverso il FSM per valutarne l'impatto sulle metriche di pHQ. È implementato un processo ibrido di Analisi di Sensibilità e Quantificazione dell'Incertezza, combinando il metodo Morris One-at-a-Time con la Decomposizione della Varianza, usando un meta-modello costruito con tecnica Kriging per ottimizzarne l'efficienza. Eseguita la UA, il focus si sposta dulla dimensione Assegnata delle HQ: seguendo il Modified Handling Qualities Rating Method dell'EASA e le linee guida EUROCAE ED-295 vengono quindi eseguite specifiche manovre di volo (FTM) all'interno degli Inviluppi di Volo Normale e Operativo, raccogliendo dati sulle HQ per verificare che il pilota disponga della sufficiente capacità residua per eseguire le FTM. Questo lavoro dimostra, in conclusione, come impostare un processo robusto di Analisi dell'Incertezza, favorendo la diffusione dell'uso della simulazione a supporto di decisioni consapevoli in ambito certificativo.
Certification by simulation of an eVTOL
Favaro, Lorenzo
2023/2024
Abstract
The integration of eVTOLs into the urban airspace presents major certification challenges, as strict safety and performance standards must be adhered to. Ground and flight testing procedures are indeed highly complex and time consuming, and may involve considerable risks. In response to these challenges, Simulation emerges as a pivotal tool for compliance demonstration, as reinforced by the Rotorcraft Certification by Simulation (RoCS) Programme. In this scenario, objective of present thesis is to perform a Certification-by-Simulation (CbS) exercise of EASA SC VTOL Handling and Flying Qualities rules for the low-speed regime HQs of a small-scale eVTOL. The work, based on RoCS guidelines, develops along two complementary phases. In the first part the Predicted dimension of HQs (pHQs) is explored: here the research focuses on addressing the main sources of uncertainty and to quantify their impact on the prediction of the Flight Simulation Model (FSM), in support to the Validation and Credibility Assessment Phases. To do so, the proposed methodology integrates the statistical simulation tool Dakota with the FSM: uncertainty ranges are assigned to key input factors identified as critical to model fidelity and systematically propagated through the FSM to assess their impact on the pHQs metrics. A hybrid Sensitivity Analysis/Uncertainty Quantification framework, combining the Morris One-at-a-Time method with Variance-Based Decomposition - using a Kriging meta-model for efficiency - is implemented. After the UA, the focus shifts to the Assigned HQ dimension: following EASA Modified Handling Qualities Rating Method and EUROCAE ED-295 guidelines, specific Flight Test Manoeuvres are performed, both in the Normal and Operational Flight Envelopes, collecting evidence on vehicle's HQs to ensure that sufficient workload capacity is available to the pilot to complete the tasks safely. This work ultimately demonstrates how to implement a robust Uncertainty Analysis framework, contributing to the widespread use of simulation to support informed decision-making in certification.File | Dimensione | Formato | |
---|---|---|---|
2025_04_Favaro_Tesi_01.pdf
accessibile in internet solo dagli utenti autorizzati
Descrizione: Testo della tesi
Dimensione
12.88 MB
Formato
Adobe PDF
|
12.88 MB | Adobe PDF | Visualizza/Apri |
2025_04_Favaro_Executive Summary_02.pdf
accessibile in internet solo dagli utenti autorizzati
Descrizione: Executive summary
Dimensione
2.62 MB
Formato
Adobe PDF
|
2.62 MB | Adobe PDF | Visualizza/Apri |
I documenti in POLITesi sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.
https://hdl.handle.net/10589/234663