The driveability analysis is a key step in the design of offshore foundations for structures such as wind turbines and oil platforms. This analysis involves checking whether the piles can be driven to the required depth, guiding the selection of the most suitable hammers and minimising installation risks and costs. Currently, the most widely used software for driveability analysis is GRLWEAP, which uses the wave equation to predict the number of blows exerted by the hammer and the stresses on the piles during driving. The accuracy of such analyses is highly dependent on the correct estimation of the soil resistance to driving (SRD). Many existing methods incorporate the concept of friction fatigue to improve SRD predictions, however, there is no standardised approach to effectively replicate these formulations in analysis software, as the latter implements its own specific method to account for this. This thesis aims to find a general procedure to convert any model that estimates SRD into a form that can be replicated in GRLWEAP. The research begins with a review of the main analytical models used to calculate SRD, with a focus on the effects of friction fatigue. Next, the internal calculation structure of the GRLWEAP software is examined. A methodology is then developed to integrate SRD estimation techniques not originally included in the software, aligning analytical approaches with numerical simulations. This procedure is implemented by means of an optimisation, which allows the software's input parameters to be calibrated to better fit the theoretical models. Finally, through the analysis of a real case, a standardised procedure was found to back-estimate the SRD, once in possession of the driving records and some information on soil at site. This process makes it possible to obtain a deeper understanding of soil behaviour during pile installation and to validate the design methods used. This study contributes to the advancement of offshore geotechnical engineering by enhancing the practical applicability of numerical tools.
L'analisi di battitura è una fase fondamentale nella progettazione delle fondazioni offshore per strutture come turbine eoliche e piattaforme petrolifere. Questa analisi prevede di verificare se i pali possono essere infissi alla profondità richiesta, guidando la scelta dei martelli più adatti e riducendo al minimo i rischi ed i costi di installazione. Attualmente, il software più utilizzato per l'analisi di battitura è GRLWEAP, il quale impiega l'equazione delle onde per prevedere il numero di colpi esercitati dal martello e le sollecitazioni sui pali durante l’infissione. L'accuratezza di tali analisi dipende fortemente dalla corretta stima della resistenza del terreno all’infissione (SRD). Molti metodi esistenti incorporano il concetto di friction fatigue per migliorare le previsioni della SRD; tuttavia, non esiste un approccio standardizzato per replicare efficacemente queste formulazioni nel software di analisi, in quanto quest’ultimo implementa un proprio specifico metodo per tenerne conto. Questa tesi si propone di trovare una procedura generale per convertire qualsiasi modello che stimi la SRD in una forma che possa essere riprodotta in GRLWEAP. La ricerca inizia con una revisione dei principali modelli analitici utilizzati per calcolare la SRD, con particolare attenzione agli effetti della friction fatigue. Successivamente, viene esaminata la struttura di calcolo interna del software GRLWEAP. Viene quindi sviluppata una metodologia per integrare tecniche di stima della SRD non originariamente incluse nel software, allineando gli approcci analitici con le simulazioni numeriche. Questa procedura viene attuata per mezzo di una ottimizzazione, la quale consente di calibrare i parametri di input del software al fine di riprodurre al meglio i modelli teorici. Infine, mediante l’analisi di un caso reale, è stata trovata una procedura standardizzata volta a stimare a ritroso la SRD, una volta in possesso dei dati di battitura e di alcune informazioni sul terreno in situ. Questo processo permette di ottenere una comprensione più approfondita del comportamento del suolo durante l'installazione dei pali ed a validare i metodi di progettazione utilizzati. Questa ricerca contribuisce all'avanzamento dell'ingegneria geotecnica offshore, rafforzando l'applicabilità pratica degli strumenti numerici.
Driveability analysis of offshore piles: a generalised friction fatigue-based SRD implementation
TRENTO, NICOLA
2023/2024
Abstract
The driveability analysis is a key step in the design of offshore foundations for structures such as wind turbines and oil platforms. This analysis involves checking whether the piles can be driven to the required depth, guiding the selection of the most suitable hammers and minimising installation risks and costs. Currently, the most widely used software for driveability analysis is GRLWEAP, which uses the wave equation to predict the number of blows exerted by the hammer and the stresses on the piles during driving. The accuracy of such analyses is highly dependent on the correct estimation of the soil resistance to driving (SRD). Many existing methods incorporate the concept of friction fatigue to improve SRD predictions, however, there is no standardised approach to effectively replicate these formulations in analysis software, as the latter implements its own specific method to account for this. This thesis aims to find a general procedure to convert any model that estimates SRD into a form that can be replicated in GRLWEAP. The research begins with a review of the main analytical models used to calculate SRD, with a focus on the effects of friction fatigue. Next, the internal calculation structure of the GRLWEAP software is examined. A methodology is then developed to integrate SRD estimation techniques not originally included in the software, aligning analytical approaches with numerical simulations. This procedure is implemented by means of an optimisation, which allows the software's input parameters to be calibrated to better fit the theoretical models. Finally, through the analysis of a real case, a standardised procedure was found to back-estimate the SRD, once in possession of the driving records and some information on soil at site. This process makes it possible to obtain a deeper understanding of soil behaviour during pile installation and to validate the design methods used. This study contributes to the advancement of offshore geotechnical engineering by enhancing the practical applicability of numerical tools.File | Dimensione | Formato | |
---|---|---|---|
2025_04_Trento.pdf
accessibile in internet per tutti
Dimensione
9.32 MB
Formato
Adobe PDF
|
9.32 MB | Adobe PDF | Visualizza/Apri |
I documenti in POLITesi sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.
https://hdl.handle.net/10589/234671