This project focuses on the study of dose distribution in positron emission tomography (PET) environments, using Zirconium-89 (Zr-89) conjugated with girentuximab, a monoclonal antibody specific to renal carcinomas, as a tracer instead of the Fluorine-18 (F-18) currently employed, with patients diagnosed with renal cell carcinoma (RCC) who will undergo surgical removal of the tumour mass. Zirconium-89 has a half-life of 78.4 hours, longer than Fluorine-18 (110 minutes), which makes it ideal for being conjugated with long-circulating probes like monoclonal antibodies; this combination, called immuno-PET, combines the high sensitivity of PET with the specificity of antibodies, increasing both the diagnostic and therapeutic potential. The research aims to evaluate the aspects associated with radiation protection of the involved personnel. The main objective is to quantify the rate of ambient dose equivalent emitted by the patient in the operational environment, monitoring the dose rate at the time of administration and until the completion of diagnostic activities covering a span of eleven days. The experimental part was accompanied by a section of simulations with FLUKA, software based on the Monte Carlo method, to verify if the measurements correspond with the simulated expectations on a computational phantom built to have a generalized model on which to run the simulations, based on anatomical measurements, data present in literature, and data derived from PET images of the patients included in this study. The results confirmed that all the dose points examined except for two, related to the lumbar area at t=0 hours at 25 cm and the thoracic area at t=120 hours in contact, generated dose rates statistically comparable with the experimental ones, using a t-test with a confidence interval of 95%. Furthermore, the absorbed dose in the patient's organs following the injection of the radiopharmaceutical was also calculated using the same data and starting conditions of the previous simulation, showing how it is statistically comparable with the data present in the literature regarding it, always using a t-test with a confidence interval of 95%, except for the liver and kidneys which were found to have absorbed a higher dose according to FLUKA simulations. The resolution and quality of the PET images obtained with 89Zr-girentuximab were also evaluated, highlighting the quality achieved thanks to the high specificity of Girentuximab in binding to the tumour area and the excellent resolution and contrast with the background provided by Zirconium-89. The computational model thus proved valid and able to replicate the measurements and align with the data present in literature; however, to obtain even more accurate and meaningful results, it is necessary that in the future a study with 89Zr-girentuximab be performed on a larger sample of patients and that the computational phantom be refined with more precise data regarding the biodistribution of the radiotracer in the body and improving the modelling of the organs and internal structures, which are the cause of deviation from the experimental data.
Questo progetto si concentra sullo studio della distribuzione della dose negli ambienti di tomografia a emissione di positroni (PET), utilizzando lo Zirconio-89 (Zr-89) coniugato al girentuximab, un anticorpo monoclonale specifico per i carcinomi renali, come tracciante anziché il Fluoro-18 (F-18) attualmente impiegato, con pazienti a cui è stato diagnosticato un carcinoma a cellule renali (RCC) che dovranno essere sottoposti a rimozione chirurgica della massa tumorale. Lo Zirconio-89 possiede un’emivita di 78.4 ore, più lunga di quella del Fluoro-18 (110 minuti), che lo rende ideale per essere coniugato con sonde a lunga circolazione come gli anticorpi monoclonali; questo connubio, denominato immuno-PET, combina l’alta sensitività della PET con la specificità degli anticorpi, aumentando il potenziale sia diagnostico che terapeutico. La ricerca mira a valutare gli aspetti associati alla radioprotezione del personale coinvolto. L'obiettivo principale è quantificare il rateo di equivalente di dose ambientale emesso dal paziente nell'ambiente operativo, monitorando il rateo di dose al momento della somministrazione e fino al termine delle attività diagnostiche che coprono un arco di undici giorni. La parte sperimentale è stata affiancata da una parte di simulazioni con FLUKA, software che si basa sul metodo Monte Carlo, per verificare se le misurazioni corrispondono con le aspettative simulate su un fantoccio computazionale costruito per avere un modello generalizzato su cui eseguire le simulazioni, basandosi su misure anatomiche, dati presenti in letteratura e ricavati dalle immagini PET dei pazienti inclusi in questo studio. I risultati hanno confermato che tutti i punti dose in esame tranne due, relativi all’area lombare a t=0 ore a 25 cm e all’area toracica a t=120 ore a contatto, hanno generato ratei di dose statisticamente confrontabili con quelli sperimentali, utilizzando un t-test con un intervallo di confidenza del 95%. Inoltre, è stata anche calcolata la dose assorbita negli organi del paziente in seguito all'iniezione del radiofarmaco utilizzando gli stessi dati e condizioni di partenza della precedente simulazione, dimostrando come risultino statisticamente comparabili con i dati presenti in letteratura a riguardo, usando sempre un t-test con un intervallo di confidenza del 95%, ad eccezione di fegato e reni che risultano aver assorbito una dose maggiore secondo le simulazioni FLUKA. È stata inoltre valutata la risoluzione e la qualità delle immagini PET ottenute con lo 89Zr-girentuximab, evidenziando la qualità ottenuta grazie all’alta specificità del Girentuximab di legarsi alla zona tumorale e l’ottima risoluzione e contrasto con il fondo fornita dallo zirconio-89. Il modello computazionale si è così dimostrato valido ed in grado di replicare le misurazioni ed allinearsi con i dati presenti in letteratura; tuttavia, per ottenere risultati ancora più accurati e significativi, è necessario che in futuro si esegua uno studio con 89Zr-girentuximab su un campione più ampio di pazienti e si rifinisca il fantoccio computazionale con dati più precisi riguardo alla biodistribuzione del tracciante radioattivo nel corpo e migliorando la modellizzazione degli organi e delle strutture interne, che sono causa di scostamento rispetto ai dati sperimentali.
Radiation protection for PET imaging with Zirconium-89 in renal cell carcinoma patients
ROMANINI, LORENZO
2023/2024
Abstract
This project focuses on the study of dose distribution in positron emission tomography (PET) environments, using Zirconium-89 (Zr-89) conjugated with girentuximab, a monoclonal antibody specific to renal carcinomas, as a tracer instead of the Fluorine-18 (F-18) currently employed, with patients diagnosed with renal cell carcinoma (RCC) who will undergo surgical removal of the tumour mass. Zirconium-89 has a half-life of 78.4 hours, longer than Fluorine-18 (110 minutes), which makes it ideal for being conjugated with long-circulating probes like monoclonal antibodies; this combination, called immuno-PET, combines the high sensitivity of PET with the specificity of antibodies, increasing both the diagnostic and therapeutic potential. The research aims to evaluate the aspects associated with radiation protection of the involved personnel. The main objective is to quantify the rate of ambient dose equivalent emitted by the patient in the operational environment, monitoring the dose rate at the time of administration and until the completion of diagnostic activities covering a span of eleven days. The experimental part was accompanied by a section of simulations with FLUKA, software based on the Monte Carlo method, to verify if the measurements correspond with the simulated expectations on a computational phantom built to have a generalized model on which to run the simulations, based on anatomical measurements, data present in literature, and data derived from PET images of the patients included in this study. The results confirmed that all the dose points examined except for two, related to the lumbar area at t=0 hours at 25 cm and the thoracic area at t=120 hours in contact, generated dose rates statistically comparable with the experimental ones, using a t-test with a confidence interval of 95%. Furthermore, the absorbed dose in the patient's organs following the injection of the radiopharmaceutical was also calculated using the same data and starting conditions of the previous simulation, showing how it is statistically comparable with the data present in the literature regarding it, always using a t-test with a confidence interval of 95%, except for the liver and kidneys which were found to have absorbed a higher dose according to FLUKA simulations. The resolution and quality of the PET images obtained with 89Zr-girentuximab were also evaluated, highlighting the quality achieved thanks to the high specificity of Girentuximab in binding to the tumour area and the excellent resolution and contrast with the background provided by Zirconium-89. The computational model thus proved valid and able to replicate the measurements and align with the data present in literature; however, to obtain even more accurate and meaningful results, it is necessary that in the future a study with 89Zr-girentuximab be performed on a larger sample of patients and that the computational phantom be refined with more precise data regarding the biodistribution of the radiotracer in the body and improving the modelling of the organs and internal structures, which are the cause of deviation from the experimental data.File | Dimensione | Formato | |
---|---|---|---|
2025_04_Romanini_Tesi.pdf
non accessibile
Dimensione
2.06 MB
Formato
Adobe PDF
|
2.06 MB | Adobe PDF | Visualizza/Apri |
2025_04_Romanini_Executive_Summary.pdf
non accessibile
Dimensione
820.09 kB
Formato
Adobe PDF
|
820.09 kB | Adobe PDF | Visualizza/Apri |
I documenti in POLITesi sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.
https://hdl.handle.net/10589/234691