The increasing penetration of intermittent renewable energy sources necessitates the deployment of large-scale energy storage systems to stabilize the grid and ensure energy availability when generation is insufficient. However, this demand coincides with the exponential growth of battery need for transportation electrification, particularly in battery electric vehicles (BEVs). This trend raises concerns about supply chain risks due to high material demand and the concentration of battery material processing in a few key regions. In response to these challenges, this study aims to explore more abundant and cost-effective materials as alternatives to lithium, thereby reducing dependency and enhancing supply security. Potassium-ion batteries have emerged as a promising candidate due to the greater terrestrial abundance and lower cost of potassium compared to lithium. Sulfur, which has previously been tested at room temperature (RT) with excellent results as a cathode material for lithium, has been investigated in this study using several electrochemical techniques, including GCPL, EIS, GITT, and CV. These analyses have allowed for the identification of key operational parameters and critical challenges when coupled with potassium, laying the groundwork for further optimizations to ensure the cycle life and stability required for commercial applications. Additionally, this work investigates a novel nearly-RT solid-state ceramic electrolyte (SSE) composed of earth- abundant materials, tested in half-cells as a potential component for future high-energy density potassium-metal batteries. The results indicate excellent material stability; however, several challenges remain, including mechanical fragility, dendrite formation, and the need for advanced assessment techniques to evaluate evolving phenomena.
L'aumento della penetrazione delle fonti di energia rinnovabile intermittenti rende necessaria l'implementazione di sistemi di accumulo di energia su larga scala per stabilizzare la rete e garantire la disponibilità di energia quando la generazione risulta insufficiente. Tuttavia, questa domanda coincide con la crescita esponenziale della necessità di batterie per l'elettrificazione dei trasporti, in particolare per i veicoli elettrici a batteria (BEV). Questa tendenza solleva preoccupazioni sui rischi legati alla catena di approvvigionamento a causa dell'elevata domanda di materiali e della concentrazione della lavorazione dei materiali per batterie in poche regioni chiave. In risposta a queste sfide, questo studio si propone di esplorare materiali più abbondanti ed economici come alternative al litio, riducendo così la dipendenza e migliorando la sicurezza dell'approvvigionamento. Le batterie agli ioni di potassio sono emerse come un candidato promettente grazie alla maggiore abbondanza terrestre e al minor costo del potassio rispetto al litio. Lo zolfo, precedentemente testato a temperatura ambiente (RT) con ottimi risultati come materiale catodico per il litio, è stato indagato in questo studio attraverso diverse tecniche elettrochimiche, tra cui GCPL, EIS, GITT e CV. Queste analisi hanno permesso di identificare parametri operativi chiave e sfide critiche nell'accoppiamento con il potassio, ponendo le basi per ulteriori ottimizzazioni al fine di garantire la durata del ciclo e la stabilità necessarie per applicazioni commerciali. Inoltre, questo lavoro esplora un innovativo elettrolita ceramico solido (SSE) quasi a temperatura ambiente, composto da materiali abbondanti sulla Terra e testato in mezze celle come possibile componente per future batterie al potassio-metallo ad alta densità energetica. I risultati indicano un'eccellente stabilità del materiale; tuttavia, rimangono diverse sfide, tra cui la fragilità meccanica, la formazione di dendriti e la necessità di tecniche di valutazione avanzate per analizzare i fenomeni evolutivi.
Investigation of k-metal symmetric cells with solid-state electrolyte and sulfur as low-cost, abundant cathode material for k-ion batteries
Cieno, Alessandro
2023/2024
Abstract
The increasing penetration of intermittent renewable energy sources necessitates the deployment of large-scale energy storage systems to stabilize the grid and ensure energy availability when generation is insufficient. However, this demand coincides with the exponential growth of battery need for transportation electrification, particularly in battery electric vehicles (BEVs). This trend raises concerns about supply chain risks due to high material demand and the concentration of battery material processing in a few key regions. In response to these challenges, this study aims to explore more abundant and cost-effective materials as alternatives to lithium, thereby reducing dependency and enhancing supply security. Potassium-ion batteries have emerged as a promising candidate due to the greater terrestrial abundance and lower cost of potassium compared to lithium. Sulfur, which has previously been tested at room temperature (RT) with excellent results as a cathode material for lithium, has been investigated in this study using several electrochemical techniques, including GCPL, EIS, GITT, and CV. These analyses have allowed for the identification of key operational parameters and critical challenges when coupled with potassium, laying the groundwork for further optimizations to ensure the cycle life and stability required for commercial applications. Additionally, this work investigates a novel nearly-RT solid-state ceramic electrolyte (SSE) composed of earth- abundant materials, tested in half-cells as a potential component for future high-energy density potassium-metal batteries. The results indicate excellent material stability; however, several challenges remain, including mechanical fragility, dendrite formation, and the need for advanced assessment techniques to evaluate evolving phenomena.File | Dimensione | Formato | |
---|---|---|---|
2025_4_Cieno.pdf
accessibile in internet per tutti
Descrizione: TESTO TESI
Dimensione
5.35 MB
Formato
Adobe PDF
|
5.35 MB | Adobe PDF | Visualizza/Apri |
I documenti in POLITesi sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.
https://hdl.handle.net/10589/234696