Fiber Bragg Grating (FBG) sensors are gaining more and more relevance in the industry to retrieve quantities for monitoring the health of a structure. One problem with these sensors is that they are sensitive to both the strain and temperature. This phenomenon is known in the literature as thermomechanical coupling. In this thesis, a technique that uses a Fiber Bragg Grating (FBG) sensor inscribed in a polarization maintaining (PM) optical fiber for decoupling the measurements of strain and temperature is presented and experimentally demonstrated. Initially, the fibers were characterized using a custom-built measurement apparatus. This setup was designed and built to test the fibers within large temperature and strain ranges. This without introducing large disturbances, which would have made the measurements inaccurate. To embed the fibers properly, a finite element method (FEM) model was developed to conduct a preliminary study on the orientation dependence of the sensitivities. Subsequently, optical fibers were incorporated into unidirectional glass fiber composite samples with varying in-section orientations found with the FEM model. To do so, a setup that exploits the dependence of the birefringence on the transverse force was realized. After embedding, the fibers were thermally and mechanically calibrated. Finally, a few validation cycles are performed. With non-embedded sensors, it was possible to retrieve the applied strains with a residual of (−12.68±97.20)μϵ and a temperature with a residual of (−0.55±9.48)°C. Once embedded, the sensitivities changed. For the fibers oriented near 45° the change was small, which is in agreement with the simulations. For the fiber oriented near 0° the sensitivities decreased significantly. This confirms the importance of the chosen orientation for embedment. The sensor errors also changed. The error increased for the fiber oriented at 0°. Instead, the fiber oriented at 45° had an error on strain and temperature measurements of (−73.72±55.10)μϵ and (−0.79±1.16)°C, which is near the value of the non-embedded case. As a result, it was possible to demonstrate the dependence of sensor accuracy on embedment orientation.
I sensori a reticolo di Bragg FBG stanno acquisendo sempre maggiore rilievo per misurare grandezze necessarie a monitorare lo stato di salute delle strutture. Il problema con questi sensori è la loro simultanea sensibilità alla deformazione e alla temperatura. Questo fenomeno è noto in letteratura come accoppiamento termomeccanico. In questa tesi viene studiata e applicata una tecnica basata sull’utilizzo di sensori FBG incisi su fibre ottiche a mantenimento di polarizzazione per disaccoppiare le misurazioni di deformazione e temperatura. Inizialmente, le fibre sono state tarate utilizzando un setup appositamente realizzato per questo scopo. Il setup è stato progettato e costruito per testare le fibre in ampi intervalli di temperatura e deformazione. Questo senza andare a introdurre grandi disturbi che avrebbero reso le misurazioni inaccurate. Per inglobare le fibre ottiche con ponderazione è stato realizzato un modello FEM con cui eseguire uno studio preliminare sulla dipendenza delle sensibilità all’orientamento della fibra inglobata. Dopodiché, la fibra ottica è stata inglobata all’interno di provini in fibra di vetro unidirezionale con gli orientamenti della sezione trovati con il modello FEM. Per fare ciò, è stato realizzato un setup che sfrutta la dipendenza della birifrangenza alle forze trasversali. Dopo l’inglobamento, le fibre sono state ritarate. Infine, sono stati effettuati cicli di validazione. Con i sensori non inglobati è stato possibile misurare la deformazione con un residuo di (−12.68±97.20)μϵ e la temperatura con un residuo di (−0.55±9.48)°C. Una volta inglobata, la fibra orientata a circa 45° ha leggermente diminuito le sue sensibilità, in accordo con i risultati ottenuti dalle simulazioni. Per la fibra orientata a circa 0° le sensibilità sono diminuite parecchio. Anche gli errori commessi dai sensori sono cambiati. Per la fibra orientata a 0° l’errore commesso è aumentato. Invece, la fibra orientata a 45° ha riscontrato errori su deformazione e temperatura di (−73.72±55.10)μϵ e (−0.79±1.16)°C, simile al valore prima dell’inglobamento. Pertanto, è stato possibile dimostrare come la scelta dell’orientamento sia importante per l’accuratezza dei sensori.
PM fiber for thermal and mechanical decoupling in embedded fbg sensors: study of orientation effects
Henriquet, Diego
2023/2024
Abstract
Fiber Bragg Grating (FBG) sensors are gaining more and more relevance in the industry to retrieve quantities for monitoring the health of a structure. One problem with these sensors is that they are sensitive to both the strain and temperature. This phenomenon is known in the literature as thermomechanical coupling. In this thesis, a technique that uses a Fiber Bragg Grating (FBG) sensor inscribed in a polarization maintaining (PM) optical fiber for decoupling the measurements of strain and temperature is presented and experimentally demonstrated. Initially, the fibers were characterized using a custom-built measurement apparatus. This setup was designed and built to test the fibers within large temperature and strain ranges. This without introducing large disturbances, which would have made the measurements inaccurate. To embed the fibers properly, a finite element method (FEM) model was developed to conduct a preliminary study on the orientation dependence of the sensitivities. Subsequently, optical fibers were incorporated into unidirectional glass fiber composite samples with varying in-section orientations found with the FEM model. To do so, a setup that exploits the dependence of the birefringence on the transverse force was realized. After embedding, the fibers were thermally and mechanically calibrated. Finally, a few validation cycles are performed. With non-embedded sensors, it was possible to retrieve the applied strains with a residual of (−12.68±97.20)μϵ and a temperature with a residual of (−0.55±9.48)°C. Once embedded, the sensitivities changed. For the fibers oriented near 45° the change was small, which is in agreement with the simulations. For the fiber oriented near 0° the sensitivities decreased significantly. This confirms the importance of the chosen orientation for embedment. The sensor errors also changed. The error increased for the fiber oriented at 0°. Instead, the fiber oriented at 45° had an error on strain and temperature measurements of (−73.72±55.10)μϵ and (−0.79±1.16)°C, which is near the value of the non-embedded case. As a result, it was possible to demonstrate the dependence of sensor accuracy on embedment orientation.File | Dimensione | Formato | |
---|---|---|---|
2025_04_Henriquet_Tesi.pdf
accessibile in internet per tutti
Descrizione: Tesi
Dimensione
18.53 MB
Formato
Adobe PDF
|
18.53 MB | Adobe PDF | Visualizza/Apri |
2025_04_Henriquet_Executive_Summary.pdf
accessibile in internet per tutti
Descrizione: Executive Summary
Dimensione
3.72 MB
Formato
Adobe PDF
|
3.72 MB | Adobe PDF | Visualizza/Apri |
I documenti in POLITesi sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.
https://hdl.handle.net/10589/234768