Exposure to air pollution is a major public health concern, with severe consequences on human health and dangerous documented effects on cardiovascular and respiratory systems. This thesis investigates the causal relationship between air pollution exposure and variations in cardio-respiratory activity using an Interrupted Time Series methodology. The study is based on an experimental case conducted in the area of Politecnico di Milano, where a group of participants walked along a predefined path characterized by areas with different environmental conditions. A wearable monitoring system was employed to collect real-time data on physiological parameters, including heart rate and breathing frequency, alongside environmental conditions. Data analysis reveals a significant association between exposure to specific environmental conditions and variations in physiological responses. The application of Segmented Regression allows for the identification of significant changes in physiological trend following exposure to different pollution levels. The findings indicate that individuals experience measurable alterations in cardio-respiratory activity when moving between areas with different environmental conditions. The results of this research demonstrate the effectiveness of Interrupted Time Series analysis in assessing environmental health impacts, and provide strong evidence of the effect of air pollution on human health, highlighting the importance of air quality monitoring and policies aimed at reducing exposure to airborne contaminants.
L’esposizione all’inquinamento atmosferico rappresenta una delle principali minacce per la salute pubblica, con gravi conseguenze sulla salute umana e pericolosi effetti documentati sul sistema cardiovascolare e respiratorio. Questa tesi analizza la relazione causale tra l’esposizione agli inquinanti e le variazioni nell’attività cardio-respiratoria, utilizzando un approccio basato sulle Interrupted Time Series. Lo studio si basa su un esperimento condotto nell’area del Politecnico di Milano, in cui un gruppo di partecipanti ha seguito un percorso predefinito, attraversando zone con diverse condizioni ambientali. Durante il tragitto, un sistema di monitoraggio indossabile è stata utilizzato per raccogliere dati in tempo reale sui parametri fisiologici, come la frequenza cardiaca e respiratoria, insieme alle condizioni ambientali. L’analisi dei dati rivela una correlazione significativa tra l’esposizione a specifiche condizioni ambientali e le variazioni delle risposte fisiologiche. L’applicazione della Segmented Regression permette di identificare cambiamenti significativi nei trend fisiologici in seguito all’esposizione a diversi livelli di inquinamento. I risultati indicano che gli individui sperimentano alterazioni misurabili nell’attività cardiorespiratoria quando si spostano tra aree con condizioni ambientali differenti. I risultati di questa ricerca dimostrano l’efficacia dell’analisi per Interrupted Time Series nella valutazioni degli impatti ambientali sulla salute e forniscono prove concrete dell’effetto dell’inquinamento atmosferico sulla saluta umana, sottolineando l’importanza del monitoraggio della qualità dell’aria e di politiche volte a ridurre l’esposizione agli agenti inquinanti.
An Interrupted Time Series approach to assess the effects of air pollution on cardio-respiratory activity
GREGORINI, LUCIA
2023/2024
Abstract
Exposure to air pollution is a major public health concern, with severe consequences on human health and dangerous documented effects on cardiovascular and respiratory systems. This thesis investigates the causal relationship between air pollution exposure and variations in cardio-respiratory activity using an Interrupted Time Series methodology. The study is based on an experimental case conducted in the area of Politecnico di Milano, where a group of participants walked along a predefined path characterized by areas with different environmental conditions. A wearable monitoring system was employed to collect real-time data on physiological parameters, including heart rate and breathing frequency, alongside environmental conditions. Data analysis reveals a significant association between exposure to specific environmental conditions and variations in physiological responses. The application of Segmented Regression allows for the identification of significant changes in physiological trend following exposure to different pollution levels. The findings indicate that individuals experience measurable alterations in cardio-respiratory activity when moving between areas with different environmental conditions. The results of this research demonstrate the effectiveness of Interrupted Time Series analysis in assessing environmental health impacts, and provide strong evidence of the effect of air pollution on human health, highlighting the importance of air quality monitoring and policies aimed at reducing exposure to airborne contaminants.File | Dimensione | Formato | |
---|---|---|---|
2025_4_Gregorini.pdf
accessibile in internet per tutti
Dimensione
20.34 MB
Formato
Adobe PDF
|
20.34 MB | Adobe PDF | Visualizza/Apri |
I documenti in POLITesi sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.
https://hdl.handle.net/10589/234774