This thesis work consisted in the stationary modelling of a thermodeasphalting packed distillation column, which constitutes the central unit of a regeneration process (industrially known as Revivoil) of waste lubricant oils, located in the Itelyum company plant in Pieve Fissiraga (LO). The technology at issue involves an initial separation of the bituminous components through a cyclone, followed by a vacuum distillation, which enables the fractionation of three lubricant cuts and vacuum gas oil. The stationary model, developed in the Aspen HYSYS® software, was built from an already existing stage-based model, which relied on HYSYS Recycle and Adjust tools. The problems in the convergence of such simulation were overcome exploiting a similar stage model, built in the Column Environment. The internal recycles were managed more easily and the industrial specifications could be indicated as the degrees of freedom of the HYSYS Column Solver. The results of this procedure, provided with an enhanced ease of simulation, indicated a good modelling of the process for the most interesting products, the lubricant fractions, together with some problems associated with the vacuum gas oil. The HYSYS configuration consisted in an equilibrium-based model, in which the efficiency of each stage was initially estimated through the O’Connell correlation and some proper approximations. The model was tested with different assays of the feedstock and different sets of industrial specifications. Some alternative configurations were also assessed: an user-specified pressure profile, a HYSYS Component Splitter unit for the modelling of the cyclone, instead of the initial flash evaporator, and a higher number of stages. The second part of this work aimed at enhancing the estimation of the efficiencies; two approaches were deepened. The first one consisted in the determination of component-based efficiencies, with a preliminary assessment of the mass transfer limitations. The second approach led to the definition of a nonequilibrium model, with a more accurate consideration of the mass transfer, aiming in the end to estimate stage-based efficiencies for the HYSYS solver.
In questa tesi è stata sviluppata una modellazione stazionaria di una colonna di distillazione a letti impaccati di termodeasfaltamento, che costituisce l’unità centrale di un processo di rigenerazione (noto come Revivoil) di oli lubrificanti esausti, situato all’interno dell’impianto della società Itelyum, presso Pieve Fissiraga (LO). La tecnologia in questione prevede una separazione iniziale della componente bituminosa tramite un ciclone, seguito da una distillazione sottovuoto, che permette il frazionamento di tre basi lubrificanti e di gasolio. Il modello, sviluppato con Aspen HYSYS®, è stato costruito a partire da uno preesistente, basato sugli strumenti Recycle e Adjust. I problemi nella convergenza della simulazione sono stati superati sfruttando un modello costruito nel Column Environment. I ricicli sono stati gestiti più semplicemente ed è stato possibile indicare le specifiche industriali come gradi di libertà del risolutore di HYSYS. I risultati di questa procedura hanno indicato una buona modellazione dei prodotti più interessanti, le frazioni lubrificanti, insieme ad alcuni problemi associati al gasolio. La configurazione di HYSYS consiste in un modello di equilibrio, in cui l’efficienza di ogni stadio è stata stimata inizialmente tramite la correlazione di O’Connell e alcune approssimazioni. Il modello è stato testato con diversi assay e set di specifiche industriali. Sono state valutate anche alcune configurazioni alternative: un profilo di pressione user-specified, un’unità di HYSYS, Component Splitter, come alternativa all’iniziale evaporatore flash per la modellazione del ciclone e un numero maggiore di stadi. La seconda parte di questa tesi ha avuto come obiettivo quello di migliorare la stima delle efficienze; due approcci sono stati approfonditi. Nel primo è stato trattato il calcolo di efficienze per i singoli componenti, con una valutazione preliminare delle limitazioni legate al trasporto di materia. Il secondo approccio ha portato allo sviluppo di un modello di non equilibrio, con una considerazione più precisa del trasporto di materia, per poter stimare efficienze per i singoli stadi per il risolutore di HYSYS.
Industrial process modelling: simulation of a thermodeasphalting section for the regeneration of used oil
SCARPANTI, DAVIDE
2023/2024
Abstract
This thesis work consisted in the stationary modelling of a thermodeasphalting packed distillation column, which constitutes the central unit of a regeneration process (industrially known as Revivoil) of waste lubricant oils, located in the Itelyum company plant in Pieve Fissiraga (LO). The technology at issue involves an initial separation of the bituminous components through a cyclone, followed by a vacuum distillation, which enables the fractionation of three lubricant cuts and vacuum gas oil. The stationary model, developed in the Aspen HYSYS® software, was built from an already existing stage-based model, which relied on HYSYS Recycle and Adjust tools. The problems in the convergence of such simulation were overcome exploiting a similar stage model, built in the Column Environment. The internal recycles were managed more easily and the industrial specifications could be indicated as the degrees of freedom of the HYSYS Column Solver. The results of this procedure, provided with an enhanced ease of simulation, indicated a good modelling of the process for the most interesting products, the lubricant fractions, together with some problems associated with the vacuum gas oil. The HYSYS configuration consisted in an equilibrium-based model, in which the efficiency of each stage was initially estimated through the O’Connell correlation and some proper approximations. The model was tested with different assays of the feedstock and different sets of industrial specifications. Some alternative configurations were also assessed: an user-specified pressure profile, a HYSYS Component Splitter unit for the modelling of the cyclone, instead of the initial flash evaporator, and a higher number of stages. The second part of this work aimed at enhancing the estimation of the efficiencies; two approaches were deepened. The first one consisted in the determination of component-based efficiencies, with a preliminary assessment of the mass transfer limitations. The second approach led to the definition of a nonequilibrium model, with a more accurate consideration of the mass transfer, aiming in the end to estimate stage-based efficiencies for the HYSYS solver.File | Dimensione | Formato | |
---|---|---|---|
2025_4_Scarpanti_Tesi.pdf
non accessibile
Descrizione: Testo tesi
Dimensione
3.7 MB
Formato
Adobe PDF
|
3.7 MB | Adobe PDF | Visualizza/Apri |
2025_4_Scarpanti_Executive Summary.pdf
non accessibile
Descrizione: Sommario esecutivo
Dimensione
423.44 kB
Formato
Adobe PDF
|
423.44 kB | Adobe PDF | Visualizza/Apri |
I documenti in POLITesi sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.
https://hdl.handle.net/10589/234781