In recent years, environmental awareness is leading to the replacement of materials obtained from fossil sources with others derived from renewable ones. In this context, cellulose is attracting increasingly interest, due to its high availability and the variety of sources from which it can be obtained. In particular, since it has at least a nanometric dimension, and thanks to its excellent chemical-physical properties, nanocellulose is gaining more and more space in the global market. Indeed, production volumes of nanocellulose are expected to continue to increase in the coming years, following the trend of the last decade, which will inevitably lead to an increase in its release into the environment. Among the different forms of nanocellulose, cellulose nanocrystals (CNCs) are obtained by removing the amorphous domain from nanocellulose and can be produced using various methods. Traditional approaches involve the use of concentrated acids, but increasing attention has been given to "green" procedures for their production. Among these more environmentally friendly processes there is the use of Deep Eutectic Solvents (DES), which allows to reduce the quantity of hazardous reagents and process by-products, while improving process yields. Although numerous studies have addressed the life cycle assessment and sustainability of nanomaterials, research on their ecotoxicological impact remains limited. In this thesis, I explored the functionalization of cellulose nanocrystals with fluorophores to track their behavior and study their effects in marine environments. The functionalized materials were characterized using Fourier Transform Infrared Spectroscopy (FTIR), Inductively Coupled Plasma Optical Emission Spectroscopy (ICP-OES), and fluorescence analysis to confirm successful chemical modification. In collaboration with the University of Siena, a preliminary ecotoxicological assessment was conducted on the functionalized nanocrystals using the marine bivalve Mytilus galloprovincialis as a bioindicator. Uptake and biological effects were analyzed through micronucleus tests and lysosomal membrane stability assays, following a 96-hour in vivo exposure to two different CNC concentrations (0.1 μg/L and 0.1 mg/L). The results indicate that cellulose nanocrystals are not genotoxic but exhibit cytotoxic effects at higher concentrations (0.1 mg/L). Following this ecotoxicological assessment and considering key properties of CNCs, such as nanoscale dimensions, biocompatibility, and biodegradability, these materials were explored for potential applications in sustainable packaging. Various CNC-based films were produced and analyzed to evaluate their properties and performance, yielding promising results in terms of optical properties and grease resistance. The findings of this thesis contribute to the growing understanding of the environmental impact of cellulose nanocrystals, highlighting the need for further research to ensure their safe and sustainable use while also paving the way for new applications where these nanomaterials can demonstrate their full potential.
Negli ultimi anni la coscienza ecologica sta portando a sostituire materiali ottenuti da fonti fossili con altri ricavabili da risorse rinnovabili. La cellulosa, data la sua grande disponibilità e la varietà di fonti da cui può essere estratta, sta diventando sempre più utilizzata in questo contesto. In particolare, grazie al fatto di presentare almeno una dimensione nanometrica e grazie alle ottime proprietà chimico-fisiche, la nanocellulosa sta conquistando sempre più spazio nel mercato globale. Si prevede infatti che i volumi di produzione della nanocellulosa continuino ad aumentare nei prossimi anni, seguendo la tendenza dell’ultimo decennio, il che porterà ad un inevitabile incremento del suo rilascio nell'ambiente. Tra le diverse forme di nanocellulosa troviamo i nanocristalli, ottenuti in seguito alla rimozione del dominio amorfo dalla nanocellulosa, che possono essere prodotti con diversi metodi. I metodi tradizionali prevedono l’utilizzo di acidi concentrati, ma oggigiorno c’è particolare attenzione all’utilizzo di procedure ‘green’ per la loro produzione. Tra questi processi meno impattanti troviamo quello che prevede l’utilizzo di Solventi Eutettici Profondi (Deep Eutectic Solvents, DES), che porta da un lato ad una riduzione delle quantità di reagenti pericolosi per l’ambiente e di sottoprodotti di processo e, allo stesso tempo, a migliori risultati in termini di resa di processo. Sebbene numerosi studi abbiano affrontato l’analisi del ciclo di vita e la sostenibilità dei nanomateriali, esiste ancora una limitata ricerca sul loro impatto ecotossicologico . Nel corso di questa tesi ho esplorato la funzionalizzazione dei nanocristalli di cellulosa con fluorofori, con l’obiettivo di tracciarne il comportamento e studiarne gli effetti negli ambienti marini. I materiali funzionalizzati sono stati caratterizzati tramite spettroscopia FTIR (Fourier Transform Infrared Spectroscopy), ICP-OES (Inductively Coupled Plasma Optical Emission Spectroscopy) e analisi della fluorescenza per confermare l’avvenuta modifica chimica. In collaborazione con l’Università di Siena, sui campioni di nanocristalli funzionalizzati è stata condotta una valutazione ecotossicologica preliminare utilizzando il bivalve marino Mytilus galloprovincialis come bioindicatore. L’assorbimento e gli effetti biologici sono stati analizzati attraverso test del micronucleo e test di stabilità della membrana lisosomiale dopo un’esposizione in vivo di 96 ore a due diverse concentrazioni di CNC (0,1 μg/L e 0,1 mg/L). I risultati indicano che i nanocristalli di cellulosa non presentano genotossicità, ma mostrano effetti citotossici a concentrazioni più elevate (0,1 mg/L). A seguito della valutazione dell’impatto ecotossicologico, considerate le proprietà chiave dei nanocristalli, tra cui dimensioni nanometriche, la biocompatibilità e la biodegradabilità, che li rendono materiali altamente promettenti per svariate applicazioni, è stata testata una possibile applicazione degli stessi nell’ambito del packaging sostenibile. Sono stati quindi prodotti e analizzati diversi film a base di nanocristalli per valutarne le proprietà e il comportamento, ottenendo risultati promettenti in termini di proprietà ottiche e resistenza ai grassi. I risultati ottenuti in questa tesi arricchiscono le conoscenze sull’impatto ambientale dei nanocristalli di cellulosa, evidenziando da un lato la necessità di ulteriori studi per garantirne un impiego sicuro e sostenibile, e dall’altro aprendo la strada a nuove applicazioni in cui questi nanomateriali possano esprimere al meglio il loro potenziale.
Cellulose nanocrystals: synthesis, potential applications and environmental implications
Bellomi, Alberto
2023/2024
Abstract
In recent years, environmental awareness is leading to the replacement of materials obtained from fossil sources with others derived from renewable ones. In this context, cellulose is attracting increasingly interest, due to its high availability and the variety of sources from which it can be obtained. In particular, since it has at least a nanometric dimension, and thanks to its excellent chemical-physical properties, nanocellulose is gaining more and more space in the global market. Indeed, production volumes of nanocellulose are expected to continue to increase in the coming years, following the trend of the last decade, which will inevitably lead to an increase in its release into the environment. Among the different forms of nanocellulose, cellulose nanocrystals (CNCs) are obtained by removing the amorphous domain from nanocellulose and can be produced using various methods. Traditional approaches involve the use of concentrated acids, but increasing attention has been given to "green" procedures for their production. Among these more environmentally friendly processes there is the use of Deep Eutectic Solvents (DES), which allows to reduce the quantity of hazardous reagents and process by-products, while improving process yields. Although numerous studies have addressed the life cycle assessment and sustainability of nanomaterials, research on their ecotoxicological impact remains limited. In this thesis, I explored the functionalization of cellulose nanocrystals with fluorophores to track their behavior and study their effects in marine environments. The functionalized materials were characterized using Fourier Transform Infrared Spectroscopy (FTIR), Inductively Coupled Plasma Optical Emission Spectroscopy (ICP-OES), and fluorescence analysis to confirm successful chemical modification. In collaboration with the University of Siena, a preliminary ecotoxicological assessment was conducted on the functionalized nanocrystals using the marine bivalve Mytilus galloprovincialis as a bioindicator. Uptake and biological effects were analyzed through micronucleus tests and lysosomal membrane stability assays, following a 96-hour in vivo exposure to two different CNC concentrations (0.1 μg/L and 0.1 mg/L). The results indicate that cellulose nanocrystals are not genotoxic but exhibit cytotoxic effects at higher concentrations (0.1 mg/L). Following this ecotoxicological assessment and considering key properties of CNCs, such as nanoscale dimensions, biocompatibility, and biodegradability, these materials were explored for potential applications in sustainable packaging. Various CNC-based films were produced and analyzed to evaluate their properties and performance, yielding promising results in terms of optical properties and grease resistance. The findings of this thesis contribute to the growing understanding of the environmental impact of cellulose nanocrystals, highlighting the need for further research to ensure their safe and sustainable use while also paving the way for new applications where these nanomaterials can demonstrate their full potential.File | Dimensione | Formato | |
---|---|---|---|
Thesis Alberto Bellomi_trial1.pdf
non accessibile
Descrizione: Thesis
Dimensione
2.88 MB
Formato
Adobe PDF
|
2.88 MB | Adobe PDF | Visualizza/Apri |
Executive_Summary_AlbertoBellomiThesis_trial3.pdf
non accessibile
Descrizione: Executive summary
Dimensione
1.03 MB
Formato
Adobe PDF
|
1.03 MB | Adobe PDF | Visualizza/Apri |
I documenti in POLITesi sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.
https://hdl.handle.net/10589/234814