Endothelial dysfunctions play a key role in the development of various vascular diseases, including aneurysms and atherosclerosis. It is now well established that local hemodynamics directly influence endothelial function, particularly through Wall Shear Stress (WSS), the shear force exerted by blood flow on the vascular wall. Experimental studies have shown that regions characterized by bifurcations, curvatures, and geometric variations of blood vessels are particularly prone to vascular pathologies, as the flow in these areas exhibits a disturbed and multidirectional pattern, altering endothelial cell responses. To study these phenomena in vitro, various devices have been developed, but none of them can accurately replicate multidirectional flow patterns while also stimulating both tissue samples and endothelial monolayers. In order to overcome these limitations, a bioreactor called Multidirectional Shear Stress Bioreactor (MSSB) was developed at Politecnico di Milano, with the ability of applying controlled multidirectional hemodynamic stimuli to cellular and tissue samples. The goal of the MSSB is to investigate the correlation between pathological states and disturbed flow patterns. This thesis, carried out in collaboration with Imperial College London, focuses on the development and validation of the Ouroboros system, an innovative pressure gradient system designed to be integrated with the MSSB, expanding the range of in vitro stimulation capabilities. The integration of these two systems enables precise control over both the magnitude and phase of WSS, providing an advanced experimental platform for studying the effects of hemodynamic forces on endothelial function. During this thesis, the Ouroboros control system was developed and optimized, its graphical interface was designed in LabVIEW, and its functionality was validated through bench tests. Subsequently, the system was integrated with the all-in-one system, and biological protocols were defined for a future experimental campaign. Additionally, a preliminary biological experiment was conducted at the Department of Bioengineering at Imperial College London to validate the system biologically and investigate the effect of flow pulsatility on endothelial cells.
Le disfunzioni endoteliali giocano un ruolo chiave nello sviluppo di numerose patologie vascolari, tra cui aneurismi e aterosclerosi. È ormai riconosciuto che l’emodinamica locale influenzi direttamente la funzionalità dell’endotelio, in particolare attraverso il Wall Shear Stress (WSS), lo sforzo di taglio esercitato dal flusso sanguigno sulla parete vascolare. Studi sperimentali hanno dimostrato che regioni caratterizzate da biforcazioni, curvature e variazioni geometriche dei vasi sanguigni sono particolarmente predisposte all’insorgenza di patologie vascolari, poiché il flusso in queste aree assume un andamento disturbato e multidirezionale, alterando la risposta delle cellule endoteliali. Per studiare tali fenomeni in vitro, sono stati sviluppati diversi dispositivi, ma nessuno di questi riesce al contempo a riprodurre in modo accurato le sollecitazioni multidirezionali e a stimolare campioni tissutali oltre che a monolayer cellulari. Presso il Politecnico di Milano è stato sviluppato il Multidirectional Shear Stress Bioreactor (MSSB), un bioreattore in grado di applicare stimoli fluidodinamici multidirezionali a campioni cellulari e tissutali, con lo scopo di indagare la correlazione tra lo stato patologico e un pattern di flusso disturbato. Questo lavoro di tesi, svolto in collaborazione con l’Imperial College di Londre, si focalizza sullo sviluppo e la verifica del sistema denominato Ouroboros, un sistema innovativo a gradienti pressori progettato per integrarsi con il MSSB e ampliare le possibilità di stimolazione in vitro. L’integrazione tra i due sistemi permette di controllare con precisione sia il modulo sia la fase del WSS, offrendo una piattaforma sperimentale avanzata per studiare l’effetto delle sollecitazioni fluidodinamiche complesse e non facilmente riproducibili in vitro sulla funzionalità endoteliale. Nel corso di questa tesi è stato sviluppato e ottimizzato il sistema di controllo di Ouroboros, progettata la sua interfaccia grafica in LabVIEW e verificata la sua funzionalità attraverso prove a banco. Successivamente, il sistema è stato integrato con il MSSB e sono stati definiti i protocolli biologici per una futura campagna sperimentale. È stato inoltre svolto un esperimento biologico preliminare presso i laboratori del dipartimento di bioingegneria dell'Imperial College di Londra con l'obiettivo di verificare le funzionalità del sistema in ambiente biologicamente rilevante e in prospettiva di studiare l’effetto della pulsatilità del flusso sulle cellule endoteliali.
Sviluppo di un sistema pneumatico integrato per l'applicazione di stimoli idrodinamici controllati a monolayer cellulari
GRASSELLI, SOFIA
2023/2024
Abstract
Endothelial dysfunctions play a key role in the development of various vascular diseases, including aneurysms and atherosclerosis. It is now well established that local hemodynamics directly influence endothelial function, particularly through Wall Shear Stress (WSS), the shear force exerted by blood flow on the vascular wall. Experimental studies have shown that regions characterized by bifurcations, curvatures, and geometric variations of blood vessels are particularly prone to vascular pathologies, as the flow in these areas exhibits a disturbed and multidirectional pattern, altering endothelial cell responses. To study these phenomena in vitro, various devices have been developed, but none of them can accurately replicate multidirectional flow patterns while also stimulating both tissue samples and endothelial monolayers. In order to overcome these limitations, a bioreactor called Multidirectional Shear Stress Bioreactor (MSSB) was developed at Politecnico di Milano, with the ability of applying controlled multidirectional hemodynamic stimuli to cellular and tissue samples. The goal of the MSSB is to investigate the correlation between pathological states and disturbed flow patterns. This thesis, carried out in collaboration with Imperial College London, focuses on the development and validation of the Ouroboros system, an innovative pressure gradient system designed to be integrated with the MSSB, expanding the range of in vitro stimulation capabilities. The integration of these two systems enables precise control over both the magnitude and phase of WSS, providing an advanced experimental platform for studying the effects of hemodynamic forces on endothelial function. During this thesis, the Ouroboros control system was developed and optimized, its graphical interface was designed in LabVIEW, and its functionality was validated through bench tests. Subsequently, the system was integrated with the all-in-one system, and biological protocols were defined for a future experimental campaign. Additionally, a preliminary biological experiment was conducted at the Department of Bioengineering at Imperial College London to validate the system biologically and investigate the effect of flow pulsatility on endothelial cells.File | Dimensione | Formato | |
---|---|---|---|
2025_4_Grasselli_ES.pdf
non accessibile
Descrizione: Executive Summary
Dimensione
1.17 MB
Formato
Adobe PDF
|
1.17 MB | Adobe PDF | Visualizza/Apri |
2025_4_Grasselli_Tesi.pdf
non accessibile
Descrizione: Tesi
Dimensione
6.58 MB
Formato
Adobe PDF
|
6.58 MB | Adobe PDF | Visualizza/Apri |
I documenti in POLITesi sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.
https://hdl.handle.net/10589/234849