This study aims to develop an automated framework for segmenting the left ventricle from CINE cardiac magnetic resonance images, intended to support the diagnosis and analysis of cardiovascular diseases. By leveraging deep learning approaches, two models U-Net and Swin-U-Net have been implemented and compared for the accurate extraction of cardiac structures, particularly the myocardium region. The performance of these networks has been evaluated using the Dice coefficient and Intersection-over-Union (IoU), demonstrating robust segmentation capabilities, especially with the U-Net architecture. To further refine the segmentation masks, a dedicated post-processing pipeline was developed, employing contour smoothing and slice-level filtering techniques. This ensures that only the most diagnostically relevant slices are retained throughout the cardiac cycle, thereby enhancing boundary continuity, eliminating artifacts, and ultimately yielding more accurate and clinically meaningful segmentations. Overall, this multidisciplinary approach seeks to provide a reliable tool for diagnostic support in the cardiovascular field, contributing to the advancement of computer-assisted methods in medicine.
Questo studio si propone di sviluppare un framework automatizzato per segmentare il ventricolo sinistro dalle immagini CINE di risonanza magnetica cardiaca, destinato a supportare la diagnosi e l'analisi delle malattie cardiovascolari. Sfruttando approcci di deep learning, sono stati implementati e confrontati due modelli, U-Net e Swin-U-Net, per l'estrazione accurata delle strutture cardiache, in particolare della regione del miocardio. Le prestazioni di queste reti sono state valutate utilizzando il coefficiente Dice e l'Intersection-over-Union (IoU), dimostrando capacità di segmentazione robuste, soprattutto con l'architettura U-Net. Per perfezionare ulteriormente le maschere di segmentazione, è stata sviluppata una pipeline di post-elaborazione dedicata, che impiega tecniche di levigatura dei contorni e filtraggio a livello di slice. Questo garantisce che vengano mantenute solo le slice di maggiore rilevanza diagnostica durante l'intero ciclo cardiaco, migliorando la continuità dei confini, eliminando artefatti e ottenendo, in ultima analisi, segmentazioni più accurate e clinicamente significative. Nel complesso, questo approccio multidisciplinare mira a fornire uno strumento affidabile per il supporto diagnostico nel campo cardiovascolare, contribuendo al progresso dei metodi computer-assistiti in medicina.
Automated left ventricle segmentation from CINE cardiac magnetic resonance images
BALESTRIERI, NICCOLÒ
2023/2024
Abstract
This study aims to develop an automated framework for segmenting the left ventricle from CINE cardiac magnetic resonance images, intended to support the diagnosis and analysis of cardiovascular diseases. By leveraging deep learning approaches, two models U-Net and Swin-U-Net have been implemented and compared for the accurate extraction of cardiac structures, particularly the myocardium region. The performance of these networks has been evaluated using the Dice coefficient and Intersection-over-Union (IoU), demonstrating robust segmentation capabilities, especially with the U-Net architecture. To further refine the segmentation masks, a dedicated post-processing pipeline was developed, employing contour smoothing and slice-level filtering techniques. This ensures that only the most diagnostically relevant slices are retained throughout the cardiac cycle, thereby enhancing boundary continuity, eliminating artifacts, and ultimately yielding more accurate and clinically meaningful segmentations. Overall, this multidisciplinary approach seeks to provide a reliable tool for diagnostic support in the cardiovascular field, contributing to the advancement of computer-assisted methods in medicine.File | Dimensione | Formato | |
---|---|---|---|
2025_04_Balestrieri_Tesi.pdf
non accessibile
Descrizione: Tesi
Dimensione
1.29 MB
Formato
Adobe PDF
|
1.29 MB | Adobe PDF | Visualizza/Apri |
2025_04_Balestrieri_Executive Summary.pdf
non accessibile
Descrizione: Executive summary
Dimensione
532.25 kB
Formato
Adobe PDF
|
532.25 kB | Adobe PDF | Visualizza/Apri |
I documenti in POLITesi sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.
https://hdl.handle.net/10589/234874