Nanogels constitute a highly versatile class of nanocarriers, integrating the tuneable physicochemical properties of nanoparticles with the structural attributes of hydrogels, making them ideal candidates for controlled drug delivery applications. Their nanoscale architecture enables efficient drug encapsulation, protection against enzymatic degradation, and precisely regulated release kinetics. Among existing formulations, polyethyleneimine (PEI)-based nanogels have been extensively investigated due to their strong cationic nature, which facilitates nucleic acid complexation and cellular uptake. However, the inherent cytotoxicity and non-degradability of PEI pose significant challenges for clinical applications. This study focuses on the design, synthesis, and comprehensive characterization of polyethylene glycol (PEG)-Jeffamine based nanogels, developed as a biocompatible and biodegradable alternative to conventional PEG-PEI systems. The synthesis involved a multi-step functionalization process, wherein PEG was initially modified via epichlorohydrin-mediated activation, followed by the introduction of azide functionalities to enable click chemistry conjugation with Jeffamine, a polyetheramine exhibiting enhanced biocompatibility and reduced cytotoxicity. The successful progression of the functionalization reactions was confirmed through nuclear magnetic resonance (NMR) spectroscopy. The resulting nanogels were systematically characterized using dynamic light scattering (DLS), confirming their monodispersity and colloidal stability. Transmission electron microscopy (TEM) and atomic force microscopy (AFM) provided additional structural insights, revealing a spherical morphology with well-defined surface characteristics. To evaluate drug encapsulation efficiency and release kinetics, Rhodamine B (hydrophilic) and Pyrene (hydrophobic) were selected as model compounds. UV-Vis spectroscopy measurements demonstrated a significantly higher encapsulation efficiency for Rhodamine B in PEG-Jeffamine nanogels compared to PEG-PEI systems, indicating improved hydrophilic drug retention. Conversely, Pyrene exhibited a sustained release profile, attributable to hydrophobic interactions within the nanogel matrix. The biocompatibility of these nanogels was assessed through cytotoxicity assays on mammalian cell cultures (oligodendrocytes). The results demonstrated a significantly lower toxicity profile for PEG-Jeffamine nanogels compared to PEI-based counterparts, reinforcing their suitability for biomedical applications. Elemental analysis (EDS method) was conducted to quantify residual azide functionalities post-fluorophore labelling, providing insight into their functionalization capacity. In conclusion, this study provides a thorough evaluation of PEG-Jeffamine nanogels as next-generation nanocarriers for precision drug delivery. Their enhanced biocompatibility, tuneable release properties, and extensive functionalization potential establish them as a promising alternative to PEI-based systems. The findings contribute to the advancement of polymeric nanomedicine, paving the way for the development of safer and more effective drug delivery platforms with applications in oncology, gene therapy, and regenerative medicine.
I nanogel costituiscono una classe altamente versatile di nanovettori, in grado di integrare le proprietà fisico-chimiche modulabili delle nanoparticelle con le caratteristiche strutturali degli idrogel, rendendoli candidati ideali per applicazioni di rilascio controllato di farmaci. La loro architettura su scala nanometrica consente un'efficace incapsulazione dei farmaci, la protezione dalla degradazione enzimatica e una cinetica di rilascio regolata con precisione. Tra le formulazioni esistenti, i nanogel a base di polietilenimina (PEI) sono stati ampiamente studiati per la loro marcata natura cationica, che facilita la complessazione con gli acidi nucleici e l'assorbimento cellulare. Tuttavia, l’elevata citotossicità e la scarsa degradabilità del PEI rappresentano sfide significative per le applicazioni cliniche. Questo studio si concentra sulla progettazione, sintesi e caratterizzazione approfondita di nanogel a base di polietilenglicole (PEG) e Jeffamina, sviluppati come alternativa biocompatibile e biodegradabile ai sistemi convenzionali PEG-PEI. La sintesi ha coinvolto un processo di funzionalizzazione multi-step, in cui il PEG è stato inizialmente modificato tramite un'attivazione mediata da epicloridrina, seguita dall'introduzione di gruppi azide per consentire la coniugazione tramite click chemistry con la Jeffammina, una polietereammina caratterizzata da elevata biocompatibilità e ridotta citotossicità. La progressione delle reazioni di funzionalizzazione è stata confermata mediante spettroscopia di risonanza magnetica nucleare (NMR). I nanogel risultanti sono stati caratterizzati sistematicamente mediante scattering dinamico della luce (dynamic light scattering - DLS), confermando la loro monodispersità e stabilità colloidale. La microscopia elettronica a trasmissione (TEM) e la microscopia a forza atomica (AFM) hanno fornito ulteriori informazioni strutturali, rivelando una morfologia sferica con caratteristiche superficiali ben definite. Per valutare l’efficienza di incapsulazione dei farmaci e la cinetica di rilascio, sono stati selezionati due composti modello con diversa idrofilicità: la Rodamina B (idrofila) e il Pirene (idrofobo). Le misurazioni mediante spettroscopia UV-Vis hanno evidenziato un’efficienza di incapsulazione significativamente più elevata per la Rodamina B nei nanogel PEG-Jeffamina rispetto ai sistemi PEG-PEI, indicando una migliore ritenzione di farmaci idrofili. Al contrario, il Pirene ha mostrato un profilo di rilascio prolungato, attribuibile alle interazioni idrofobiche all'interno della matrice del nanogel. La biocompatibilità di questi nanogel è stata valutata tramite saggi di citotossicità su colture di cellule di mammifero (oligodendrociti). I risultati hanno evidenziato un profilo di tossicità significativamente inferiore per i nanogel PEG-Jeffammina rispetto alle controparti a base di PEI, rafforzando la loro idoneità per applicazioni biomediche. L'analisi elementare (prova EDS) è stata condotta per quantificare i gruppi azidi residui dopo la marcatura con fluorofori, fornendo informazioni sulla loro potenzialità di funzionalizzazione. In conclusione, questo studio fornisce una valutazione approfondita dei nanogel PEG-Jeffammina come nanocarrier di nuova generazione per il rilascio mirato di farmaci. La loro maggiore biocompatibilità, le proprietà di rilascio modulabili e l'ampio potenziale di funzionalizzazione li rendono un'alternativa promettente ai sistemi basati su PEI. I risultati ottenuti contribuiscono all'avanzamento della nanomedicina polimerica, aprendo la strada allo sviluppo di piattaforme di rilascio di farmaci più sicure ed efficaci con applicazioni in oncologia, terapia genica e medicina rigenerativa.
Design and characterization of Jeffamine-based nanogels for biomedical applications
Borroni, Alessandro
2023/2024
Abstract
Nanogels constitute a highly versatile class of nanocarriers, integrating the tuneable physicochemical properties of nanoparticles with the structural attributes of hydrogels, making them ideal candidates for controlled drug delivery applications. Their nanoscale architecture enables efficient drug encapsulation, protection against enzymatic degradation, and precisely regulated release kinetics. Among existing formulations, polyethyleneimine (PEI)-based nanogels have been extensively investigated due to their strong cationic nature, which facilitates nucleic acid complexation and cellular uptake. However, the inherent cytotoxicity and non-degradability of PEI pose significant challenges for clinical applications. This study focuses on the design, synthesis, and comprehensive characterization of polyethylene glycol (PEG)-Jeffamine based nanogels, developed as a biocompatible and biodegradable alternative to conventional PEG-PEI systems. The synthesis involved a multi-step functionalization process, wherein PEG was initially modified via epichlorohydrin-mediated activation, followed by the introduction of azide functionalities to enable click chemistry conjugation with Jeffamine, a polyetheramine exhibiting enhanced biocompatibility and reduced cytotoxicity. The successful progression of the functionalization reactions was confirmed through nuclear magnetic resonance (NMR) spectroscopy. The resulting nanogels were systematically characterized using dynamic light scattering (DLS), confirming their monodispersity and colloidal stability. Transmission electron microscopy (TEM) and atomic force microscopy (AFM) provided additional structural insights, revealing a spherical morphology with well-defined surface characteristics. To evaluate drug encapsulation efficiency and release kinetics, Rhodamine B (hydrophilic) and Pyrene (hydrophobic) were selected as model compounds. UV-Vis spectroscopy measurements demonstrated a significantly higher encapsulation efficiency for Rhodamine B in PEG-Jeffamine nanogels compared to PEG-PEI systems, indicating improved hydrophilic drug retention. Conversely, Pyrene exhibited a sustained release profile, attributable to hydrophobic interactions within the nanogel matrix. The biocompatibility of these nanogels was assessed through cytotoxicity assays on mammalian cell cultures (oligodendrocytes). The results demonstrated a significantly lower toxicity profile for PEG-Jeffamine nanogels compared to PEI-based counterparts, reinforcing their suitability for biomedical applications. Elemental analysis (EDS method) was conducted to quantify residual azide functionalities post-fluorophore labelling, providing insight into their functionalization capacity. In conclusion, this study provides a thorough evaluation of PEG-Jeffamine nanogels as next-generation nanocarriers for precision drug delivery. Their enhanced biocompatibility, tuneable release properties, and extensive functionalization potential establish them as a promising alternative to PEI-based systems. The findings contribute to the advancement of polymeric nanomedicine, paving the way for the development of safer and more effective drug delivery platforms with applications in oncology, gene therapy, and regenerative medicine.File | Dimensione | Formato | |
---|---|---|---|
2025_4_Borroni_Executive Summary.pdf
non accessibile
Descrizione: Executive Summary
Dimensione
1.11 MB
Formato
Adobe PDF
|
1.11 MB | Adobe PDF | Visualizza/Apri |
2025_4_Borroni_Tesi.pdf
non accessibile
Descrizione: Tesi
Dimensione
7.45 MB
Formato
Adobe PDF
|
7.45 MB | Adobe PDF | Visualizza/Apri |
I documenti in POLITesi sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.
https://hdl.handle.net/10589/234918