This dissertation aims to explore the emerging concept of Supply Chain Automation (SCA), focusing on information flow management. Starting from a critical review of the literature, this study synthesises various existing definitions and proposes the Supply Chain Automation Matrix, a conceptual framework that classifies automation initiatives based on the key supply chain functions (procurement, production, distribution and sales) and the time horizons of activities (short, medium and long term). Based on this framework, the research aims to explore how companies concretely implement the SCA concept. The analysis consists of two main phases: a first phase in which scientific articles, company reports, and white papers were examined to identify real cases of automation in the supply chain; and a second empirical phase, which includes the collection of practical perspectives through semi-structured interviews with industry experts, consultants, and managers, and the development of two case studies. The findings highlight how the adoption of enabling technologies, such as Robotic Process Automation (RPA), Artificial Intelligence (AI) and Internet of Things (IoT), can generate significant benefits for companies, such as improved efficiency and process accuracy. Moreover, the study explores the relationship between automation and supply chain integration, presenting how automation initiatives can foster collaboration both between different business functions and between companies in the supply chain. However, the path to complete and integrated automation presents significant barriers, which are discussed in the analysis. The conclusions propose three directions for future research: to extend the analysis to other sectors to assess differences and peculiarities, to study the maturity level of companies in adopting automation, and to investigate the applicability of automation to long-term operations.
La presente tesi si propone di esplorare il concetto emergente di Supply Chain Automation (SCA), concentrando l’analisi sulla gestione dei flussi informativi. Partendo da una rassegna critica della letteratura, il lavoro sintetizza diverse definizioni esistenti e propone la Supply Chain Automation Matrix, uno schema concettuale che classifica le iniziative di automazione in relazione alle funzioni chiave della supply chain (acquisti, produzione, distribuzione e vendita) e agli orizzonti temporali delle attività (breve, medio e lungo termine). Sulla base di questo framework, la ricerca punta ad esplorare come le aziende implementano concretamente il concetto di SCA. L'analisi si articola su due fasi principali: una prima fase di analisi in cui sono stati esaminati articoli scientifici, report aziendali, e white papers per identificare casi reali di automazione nella supply chain; e una seconda fase empirica, che comprende la raccolta di prospettive pratiche attraverso interviste semi-strutturate con esperti del settore, consulenti e manager, e lo sviluppo di due casi studio. I risultati evidenziano come l’adozione di tecnologie abilitanti, come Robotic Process Automation (RPA), Intelligenza Artificiale (AI) e Internet of Things, possa generare benefici significativi per le aziende, come il miglioramento dell’efficienza e dell’accuratezza dei processi. Inoltre, lo studio approfondisce la relazione tra automazione e integrazione della supply chain, presentando come le iniziative di automazione possano favorire la collaborazione sia tra le diverse funzioni aziendali sia tra aziende della supply chain. Tuttavia, il percorso verso un’automazione completa e integrata presenta barriere significative, che vengono discusse nell’analisi. Le conclusioni propongono tre direzioni per la ricerca futura: estendere l’analisi ad altri settori per valutare differenze e peculiarità, studiare il livello di maturità delle aziende nell’adozione dell’automazione e approfondire l’applicabilità dell’automazione alle attività di lungo termine.
Supply chain automation: a conceptual framework and insights from an interview- and case study- based analysis
Donadei, Luca;Giampietro, Lorenzo
2024/2025
Abstract
This dissertation aims to explore the emerging concept of Supply Chain Automation (SCA), focusing on information flow management. Starting from a critical review of the literature, this study synthesises various existing definitions and proposes the Supply Chain Automation Matrix, a conceptual framework that classifies automation initiatives based on the key supply chain functions (procurement, production, distribution and sales) and the time horizons of activities (short, medium and long term). Based on this framework, the research aims to explore how companies concretely implement the SCA concept. The analysis consists of two main phases: a first phase in which scientific articles, company reports, and white papers were examined to identify real cases of automation in the supply chain; and a second empirical phase, which includes the collection of practical perspectives through semi-structured interviews with industry experts, consultants, and managers, and the development of two case studies. The findings highlight how the adoption of enabling technologies, such as Robotic Process Automation (RPA), Artificial Intelligence (AI) and Internet of Things (IoT), can generate significant benefits for companies, such as improved efficiency and process accuracy. Moreover, the study explores the relationship between automation and supply chain integration, presenting how automation initiatives can foster collaboration both between different business functions and between companies in the supply chain. However, the path to complete and integrated automation presents significant barriers, which are discussed in the analysis. The conclusions propose three directions for future research: to extend the analysis to other sectors to assess differences and peculiarities, to study the maturity level of companies in adopting automation, and to investigate the applicability of automation to long-term operations.File | Dimensione | Formato | |
---|---|---|---|
Dissertation Luca Donadei - Lorenzo Giampietro.pdf
non accessibile
Dimensione
4.89 MB
Formato
Adobe PDF
|
4.89 MB | Adobe PDF | Visualizza/Apri |
I documenti in POLITesi sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.
https://hdl.handle.net/10589/234980