Cancer is one of the most significant health challenges worldwide, and it’s expected to become the first leading cause of death. Though radiotherapy, chemotherapy and surgery are effective at slowing the progression of the tumour, these conventional treatments also affect healthy tissues causing the common and undesirable side effects. The application of nano-systems as drug carriers represents a promising strategy to concentrate drugs within cancer cells, thereby reducing side effects on surrounding healthy tissues. Furthermore, stimuli-responsive materials can be incorporated, enabling localized drug release under specific environmental conditions, such as reduced pH and elevated temperatures, which are characteristic of tumours. This thesis work focuses on the synthesis, characterization, optimization and labelling of a thermo-responsive drug delivery system, designed to be applied in cancer treatment contexts. Due to its ability to precisely control molecular weight and polydispersity, Reversible Addition-Fragmentation Chain Transfer (RAFT) polymerization was selected as the method for synthesis of smart amphiphilic copolymers. Literature studies have demonstrated that the hydrophobic component of a thermo responsive polymer can affect LCST. In the previous study PLA was progressively removed from the polymer matrix to optimize thermo-responsivity, ultimately transitioning from poly((PLA-co-MAA)-b-(EG2MA-co-NIPAM)) to poly((MAA)-b (EG2MA-co-NIPAM)). In this thesis, formulations of this last polymer that showed a temperature transition near physiological levels were fully characterized. Moreover, PLA was reintroduced in the backbone with a new structural configuration, ((PHEMA-graft-PLA)-b-(EG2MA-co-NIPAM)), with the aim to restoring a solid and stable hydrophobic matrix while maintaining satisfactory thermo-responsive properties. Flash nanoprecipitation of the synthesized polymers enabled the formation of micelles. To assess pH and thermo-responsive properties, nanoparticles were characterized by DLS and UV-vis analysis. Subsequently, nanoparticles were employed in drug release studies, specifically analysing the temperature influence in the kinetic release. In the last phase of the thesis work, the tracking of cell assay in in vitro studies was crucial to verify nanoparticles biocompatibility and their efficacy in drug release. Moreover, fluorescent nanoparticles were obtained by conjugating Rhodamine B to the structure of the MAA-based copolymer formulation that showed a triggering temperature of 37°C. Labelled nanocarriers were useful to monitor cellular uptake via cytofluorimetry and confocal microscopy analysis.
Il cancro è una delle sfide sanitarie più significative a livello mondiale e si prevede che diventi la prima causa di morte. Sebbene la radioterapia, la chemioterapia e la chirurgia siano efficaci nel rallentare la progressione del tumore, questi trattamenti convenzionali influenzano anche i tessuti sani, causando i comuni e indesiderati effetti collaterali. L'applicazione di nano-sistemi come vettori per farmaci rappresenta una strategia promettente per concentrare i farmaci all'interno delle cellule tumorali, riducendo così gli effetti collaterali sui tessuti sani circostanti. Inoltre, è possibile incorporare materiali stimolo-responsivi, che consentono un rilascio localizzato del farmaco in specifiche condizioni ambientali, come un pH ridotto e temperature elevate, caratteristiche dei tumori. Questo lavoro di tesi si concentra sulla sintesi, caratterizzazione, ottimizzazione e marcatura di un sistema termo-responsivo di rilascio del farmaco, progettato per essere applicato nel trattamento del cancro. Grazie alla sua capacità di controllare con precisione il peso molecolare e la polidispersione, la polimerizzazione Reversible Addition-Fragmentation Chain Transfer (RAFT) è stata selezionata come metodo per la sintesi di copolimeri anfifilici. Studi in letteratura hanno dimostrato che la componente idrofobica di un polimero termoresponsivo può influenzare l’LCST. Nello studio precedente il PLA è stato progressivamente rimosso dalla matrice polimerica per migliorarne la termoresponsività, passando in ultima analisi dal polimero poli((PLA-co-MAA)-b (EG2MA-co-NIPAM)) al poli((MAA)-b-(EG2MA-co-NIPAM)). In questa tesi, sono state ampiamente caratterizzate le formulazioni di quest’ultimo polimero che hanno dimostrato una temperatura di transizione vicina a quella fisiologica. Inoltre, il PLA è stato reintrodotto nella catena con una nuova configurazione strutturale, ((PHEMA graft-PLA)-b-(EG2MA-co-NIPAM)), con lo scopo di ristabilire una matrice idrofobica solida e stabile mantenendo al contempo proprietà termoresponsive soddisfacenti. La nano precipitazione dei polimeri sintetizzati ha consentito la formazione di micelle. Per valutare le proprietà pH e termo-responsive, le nanoparticelle sono state caratterizzate mediante analisi DLS e UV-vis. Successivamente, le nanoparticelle sono state impiegate in studi di rilascio di farmaco, analizzando in particolare l'influenza della temperatura sul profilo di rilascio. Nell'ultima fase del lavoro di tesi, il monitoraggio della vitalità cellulare negli studi in vitro è stato cruciale per verificare la biocompatibilità delle nanoparticelle e la loro efficacia nel rilascio del farmaco. Inoltre, sono state sintetizzate nanoparticelle fluorescenti tramite la coniugazione della Rodamina B alla struttura del copolimero con MAA che ha dimostrato una temperatura di transizione di 37°C. I nanocarriers colorati sono stati utili a monitorare l’internalizzazione cellulare tramite analisi citofluorimetriche e tramite il microscopio confocale.
Smart polymeric nanoparticles with tunable hydrophobic core: labelling and thermoresponsive performance optimization
Aramini, Dania
2023/2024
Abstract
Cancer is one of the most significant health challenges worldwide, and it’s expected to become the first leading cause of death. Though radiotherapy, chemotherapy and surgery are effective at slowing the progression of the tumour, these conventional treatments also affect healthy tissues causing the common and undesirable side effects. The application of nano-systems as drug carriers represents a promising strategy to concentrate drugs within cancer cells, thereby reducing side effects on surrounding healthy tissues. Furthermore, stimuli-responsive materials can be incorporated, enabling localized drug release under specific environmental conditions, such as reduced pH and elevated temperatures, which are characteristic of tumours. This thesis work focuses on the synthesis, characterization, optimization and labelling of a thermo-responsive drug delivery system, designed to be applied in cancer treatment contexts. Due to its ability to precisely control molecular weight and polydispersity, Reversible Addition-Fragmentation Chain Transfer (RAFT) polymerization was selected as the method for synthesis of smart amphiphilic copolymers. Literature studies have demonstrated that the hydrophobic component of a thermo responsive polymer can affect LCST. In the previous study PLA was progressively removed from the polymer matrix to optimize thermo-responsivity, ultimately transitioning from poly((PLA-co-MAA)-b-(EG2MA-co-NIPAM)) to poly((MAA)-b (EG2MA-co-NIPAM)). In this thesis, formulations of this last polymer that showed a temperature transition near physiological levels were fully characterized. Moreover, PLA was reintroduced in the backbone with a new structural configuration, ((PHEMA-graft-PLA)-b-(EG2MA-co-NIPAM)), with the aim to restoring a solid and stable hydrophobic matrix while maintaining satisfactory thermo-responsive properties. Flash nanoprecipitation of the synthesized polymers enabled the formation of micelles. To assess pH and thermo-responsive properties, nanoparticles were characterized by DLS and UV-vis analysis. Subsequently, nanoparticles were employed in drug release studies, specifically analysing the temperature influence in the kinetic release. In the last phase of the thesis work, the tracking of cell assay in in vitro studies was crucial to verify nanoparticles biocompatibility and their efficacy in drug release. Moreover, fluorescent nanoparticles were obtained by conjugating Rhodamine B to the structure of the MAA-based copolymer formulation that showed a triggering temperature of 37°C. Labelled nanocarriers were useful to monitor cellular uptake via cytofluorimetry and confocal microscopy analysis.File | Dimensione | Formato | |
---|---|---|---|
10673095_thesis.pdf
non accessibile
Descrizione: Tesi
Dimensione
2.7 MB
Formato
Adobe PDF
|
2.7 MB | Adobe PDF | Visualizza/Apri |
10673095_executive.pdf
non accessibile
Descrizione: Executive summary
Dimensione
949.85 kB
Formato
Adobe PDF
|
949.85 kB | Adobe PDF | Visualizza/Apri |
I documenti in POLITesi sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.
https://hdl.handle.net/10589/235057