The use of adhesives in high-precision optical systems, such as semiconductor lithography machines, presents challenges related to residual stresses arising from curing shrinkage and thermal exposure. Adhesive joints are subjected to thermal cycling for various purposes, including curing, cleaning, and outgassing tests. These thermal stresses can induce optical aberrations, such as polarization changes and wavefront distortions, which degrade the overall performance of optical systems. This study presents the development of an analytical model for estimating thermal stresses in adhesive joints. The model accounts for the changes in material properties as the adhesive undergoes the glass transition temperature. It is formulated as a two-part approach: a nonlinear stress computation along the adhesive joint length, embedded within an iterative viscoelastic framework to capture temperature-dependent behavior and residual stress evolution over time. The formulation provide a computationally efficient yet accurate alternative for stress estimation. A numerical validation is performed through Finite Element Method simulations to assess the accuracy of the proposed analytical model. The validation process includes a mesh independence study, thermal and structural analysis. The results demonstrate strong agreement between the analytical predictions and FEM simulations across multiple test cases. The observed discrepancies remain within an acceptable range, confirming that the analytical model provides reliable stress estimations within the defined scope and assumptions of this research. The model is employed to explore strategies for reducing thermal stress by analyzing the effects of different adherent-adhesive combinations and thermal cycles. The findings reveal that extending the cooling phase significantly decreases residual stresses, while increasing the adhesive thickness further aids in stress mitigation. A comparative analysis identifies adhesives configurations with superior thermal stress performance, giving insights in optimizing adhesive joint design for thermally sensitive optical applications.
L'uso degli adesivi nei sistemi ottici ad alta precisione, come le macchine per la litografia dei semiconduttori, presenta sfide significative legate agli stress residui derivanti dal ritiro da polimerizzazione e dall'esposizione termica. I giunti adesivi sono sottoposti a cicli termici per diverse finalità, tra cui la polimerizzazione e i test di outgassing. Queste sollecitazioni possono indurre aberrazioni ottiche, come variazioni di polarizzazione e distorsioni del fronte d'onda, compromettendo le prestazioni dei sistemi ottici. Il presente studio introduce lo sviluppo di un modello analitico per la stima degli stress termici nei giunti adesivi. Il modello tiene conto delle variazioni delle proprietà del materiale dovute alla transizione vetrosa dell’adesivo. È formulato come un approccio in due fasi: un calcolo non lineare degli sforzi lungo il giunto adesivo, integrato in un quadro viscoelastico iterativo per catturare il comportamento dipendente dalla temperatura e l'evoluzione degli stress residui nel tempo. La validazione numerica è condotta mediante simulazioni agli Elementi Finiti per valutare l'accuratezza del modello analitico proposto. Il processo di validazione comprende uno studio di indipendenza dalla mesh e un’analisi termica e strutturale. I risultati mostrano una forte concordanza tra le previsioni analitiche e le simulazioni FEM in diversi casi di studio, confermando che il modello fornisce stime affidabili degli stress entro i limiti di questa ricerca. Il modello è impiegato per analizzare strategie di riduzione degli stress termici, valutando gli effetti di diverse combinazioni di aderenti-adesivi e cicli termici. I risultati evidenziano che il prolungamento della fase di raffreddamento riduce significativamente gli stress residui. Un'analisi comparativa identifica le configurazioni adesive con prestazioni superiori, fornendo indicazioni per l'ottimizzazione del design dei giunti adesivi in applicazioni ottiche sensibili agli effetti termici.
Estimation of thermal stress in adhesive joints: an analytical model proposal for high-precision optical systems
Bedoya Sanchez, Juan Pablo
2023/2024
Abstract
The use of adhesives in high-precision optical systems, such as semiconductor lithography machines, presents challenges related to residual stresses arising from curing shrinkage and thermal exposure. Adhesive joints are subjected to thermal cycling for various purposes, including curing, cleaning, and outgassing tests. These thermal stresses can induce optical aberrations, such as polarization changes and wavefront distortions, which degrade the overall performance of optical systems. This study presents the development of an analytical model for estimating thermal stresses in adhesive joints. The model accounts for the changes in material properties as the adhesive undergoes the glass transition temperature. It is formulated as a two-part approach: a nonlinear stress computation along the adhesive joint length, embedded within an iterative viscoelastic framework to capture temperature-dependent behavior and residual stress evolution over time. The formulation provide a computationally efficient yet accurate alternative for stress estimation. A numerical validation is performed through Finite Element Method simulations to assess the accuracy of the proposed analytical model. The validation process includes a mesh independence study, thermal and structural analysis. The results demonstrate strong agreement between the analytical predictions and FEM simulations across multiple test cases. The observed discrepancies remain within an acceptable range, confirming that the analytical model provides reliable stress estimations within the defined scope and assumptions of this research. The model is employed to explore strategies for reducing thermal stress by analyzing the effects of different adherent-adhesive combinations and thermal cycles. The findings reveal that extending the cooling phase significantly decreases residual stresses, while increasing the adhesive thickness further aids in stress mitigation. A comparative analysis identifies adhesives configurations with superior thermal stress performance, giving insights in optimizing adhesive joint design for thermally sensitive optical applications.File | Dimensione | Formato | |
---|---|---|---|
2025_04_Bedoya_Thesis_v2.pdf
non accessibile
Descrizione: Thesis
Dimensione
8.84 MB
Formato
Adobe PDF
|
8.84 MB | Adobe PDF | Visualizza/Apri |
2025_04_Bedoya_Executive_Summary_v2.pdf
non accessibile
Descrizione: Executive Summary
Dimensione
1.47 MB
Formato
Adobe PDF
|
1.47 MB | Adobe PDF | Visualizza/Apri |
I documenti in POLITesi sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.
https://hdl.handle.net/10589/235065