This thesis presents the design of a highly efficient electric vehicle, specifically developed for the Shell Eco-marathon competition. The primary focus of the study is on the design of the vehicle’s suspension system, wheel assembly, and steering mechanism. A systematic and rigorous design approach is employed, with a key emphasis on minimizing the mass of components while maximizing their stiffness. Both analytical and numerical methods are utilized to evaluate the strength and structural integrity of the parts, ensuring optimal performance and durability. The suspension system is characterized by a straightforward yet effective design, employing a carbon fiber rectangular tube to link the wheels on the same axle. The suspension is mounted to the vehicle chassis through two supports for the front axle and a single mount for the rear axle. The goal of this design is to achieve a lightweight structure while ensuring precise wheel alignment during operation and effective load transfer control. The steering system design is driven by a kinematic analysis aimed at minimizing the discrepancy between the theoretical and actual steering angles of the front wheels. This analysis ensures that the vehicle’s handling is both responsive and accurate. A detailed description of both the front and rear wheel assemblies is provided. The front hub carrier is designed using topology optimization techniques to achieve the best balance between performance and weight, while the rear hub carriers are specifically designed to house the motors for the rear traction wheels.
Questa tesi presenta la progettazione di un veicolo elettrico altamente efficiente, sviluppato specificamente per la competizione Shell Eco-marathon. Lo studio si concentra principalmente sulla progettazione del sistema di sospensione, dei gruppi ruota e del meccanismo di sterzo. Viene impiegato un approccio progettuale sistematico e rigoroso, con particolare attenzione alla minimizzazione della massa dei componenti massimizzandone la rigidezza. Vengono utilizzati metodi analitici e numerici per valutare la resistenza e l'integrità strutturale delle parti, garantendo prestazioni e solidità costruttiva ottimali. Il sistema di sospensione è caratterizzato da un design semplice ma efficace, che impiega un tubo rettangolare in fibra di carbonio per collegare le ruote sullo stesso asse. La sospensione è montata sul telaio del veicolo attraverso due supporti per l'asse anteriore e un singolo supporto per l'asse posteriore. L'obiettivo di questo progetto è ottenere una struttura leggera garantendo al tempo stesso un preciso allineamento delle ruote durante il funzionamento e un efficace controllo del trasferimento del carico. La progettazione del sistema sterzante è guidata da un'analisi cinematica volta a ridurre al minimo la discrepanza tra gli angoli di sterzata teorici e reali delle ruote anteriori, garantendo un'ottima scorrevolezza del veicolo. Inoltre, viene fornita una descrizione dettagliata dei gruppi ruota anteriori e posteriori. Il portamozzo anteriore è stato progettato utilizzando tecniche di ottimizzazione topologica per ottenere il miglior equilibrio tra prestazioni e massa, mentre i portamozzi posteriori sono specificamente progettati per alloggiare i motori utilizzati per la trazione posteriore.
Design of an urban concept vehicle for the shell eco-marathon competition
Tomasello, Francesco;Raho, Giuseppe
2023/2024
Abstract
This thesis presents the design of a highly efficient electric vehicle, specifically developed for the Shell Eco-marathon competition. The primary focus of the study is on the design of the vehicle’s suspension system, wheel assembly, and steering mechanism. A systematic and rigorous design approach is employed, with a key emphasis on minimizing the mass of components while maximizing their stiffness. Both analytical and numerical methods are utilized to evaluate the strength and structural integrity of the parts, ensuring optimal performance and durability. The suspension system is characterized by a straightforward yet effective design, employing a carbon fiber rectangular tube to link the wheels on the same axle. The suspension is mounted to the vehicle chassis through two supports for the front axle and a single mount for the rear axle. The goal of this design is to achieve a lightweight structure while ensuring precise wheel alignment during operation and effective load transfer control. The steering system design is driven by a kinematic analysis aimed at minimizing the discrepancy between the theoretical and actual steering angles of the front wheels. This analysis ensures that the vehicle’s handling is both responsive and accurate. A detailed description of both the front and rear wheel assemblies is provided. The front hub carrier is designed using topology optimization techniques to achieve the best balance between performance and weight, while the rear hub carriers are specifically designed to house the motors for the rear traction wheels.File | Dimensione | Formato | |
---|---|---|---|
2025_04_Raho_Tomasello_Executive_Summary.pdf
non accessibile
Descrizione: Executive Summary
Dimensione
6.81 MB
Formato
Adobe PDF
|
6.81 MB | Adobe PDF | Visualizza/Apri |
2025_04_Raho_Tomasello_Thesis.pdf
non accessibile
Descrizione: Thesis
Dimensione
83.04 MB
Formato
Adobe PDF
|
83.04 MB | Adobe PDF | Visualizza/Apri |
I documenti in POLITesi sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.
https://hdl.handle.net/10589/235078